issue_comments: 431684522
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/pydata/xarray/issues/2499#issuecomment-431684522 | https://api.github.com/repos/pydata/xarray/issues/2499 | 431684522 | MDEyOklzc3VlQ29tbWVudDQzMTY4NDUyMg== | 1328158 | 2018-10-21T16:49:35Z | 2018-10-21T19:43:27Z | NONE | Thanks, Zac. I have used various options with the Is there a rule-of-thumb approach to determining the chunk sizes for a dataset? Perhaps before setting the chunk sizes I could open the dataset to poll the dimensions of the variables and based on that come up with reasonable chunk sizes, or none at all if the dataset is reasonably small? My computations typically use a full time series per lat/lon point, so my assumption has been that I don't want to use chunking on the time dimension -- is this correct? I have been testing this code using two versions of a precipitation dataset, the full resolution is (time=1481, lat=596, lon=1385) and the low-resolution version (for faster tests) is (time=1466, lat=38, lon=87). Results of ``` $ ncdump -h nclimgrid_prcp.nc netcdf nclimgrid_prcp { dimensions: time = UNLIMITED ; // (1481 currently) lat = 596 ; lon = 1385 ; variables: int time(time) ; time:long_name = "Time, in monthly increments" ; time:standard_name = "time" ; time:calendar = "gregorian" ; time:units = "days since 1800-01-01 00:00:00" ; time:axis = "T" ; float lat(lat) ; lat:standard_name = "latitude" ; lat:long_name = "Latitude" ; lat:units = "degrees_north" ; lat:axis = "Y" ; lat:valid_min = 24.56253f ; lat:valid_max = 49.3542f ; float lon(lon) ; lon:standard_name = "longitude" ; lon:long_name = "Longitude" ; lon:units = "degrees_east" ; lon:axis = "X" ; lon:valid_min = -124.6875f ; lon:valid_max = -67.02084f ; float prcp(time, lat, lon) ; prcp:_FillValue = NaNf ; prcp:least_significant_digit = 3LL ; prcp:valid_min = 0.f ; prcp:coordinates = "time lat lon" ; prcp:long_name = "Precipitation, monthly total" ; prcp:standard_name = "precipitation_amount" ; prcp:references = "GHCN-Monthly Version 3 (Vose et al. 2011), NCEI/NOAA, https://www.ncdc.noaa.gov/ghcnm/v3.php" ; prcp:units = "millimeter" ; prcp:valid_max = 2000.f ; // global attributes: :date_created = "2018-02-15 10:29:25.485927" ; :date_modified = "2018-02-15 10:29:25.486042" ; :Conventions = "CF-1.6, ACDD-1.3" ; :ncei_template_version = "NCEI_NetCDF_Grid_Template_v2.0" ; :title = "nClimGrid" ; :naming_authority = "gov.noaa.ncei" ; :standard_name_vocabulary = "Standard Name Table v35" ; :institution = "National Centers for Environmental Information (NCEI), NOAA, Department of Commerce" ; :geospatial_lat_min = 24.56253f ; :geospatial_lat_max = 49.3542f ; :geospatial_lon_min = -124.6875f ; :geospatial_lon_max = -67.02084f ; :geospatial_lat_units = "degrees_north" ; :geospatial_lon_units = "degrees_east" ; } / repr(ds) below: / <xarray.Dataset> Dimensions: (lat: 596, lon: 1385, time: 1481) Coordinates: * time (time) datetime64[ns] 1895-01-01 1895-02-01 ... 2018-05-01 * lat (lat) float32 49.3542 49.312534 49.270866 ... 24.6042 24.562532 * lon (lon) float32 -124.6875 -124.645836 ... -67.0625 -67.020836 Data variables: prcp (time, lat, lon) float32 ... Attributes: date_created: 2018-02-15 10:29:25.485927 date_modified: 2018-02-15 10:29:25.486042 Conventions: CF-1.6, ACDD-1.3 ncei_template_version: NCEI_NetCDF_Grid_Template_v2.0 title: nClimGrid naming_authority: gov.noaa.ncei standard_name_vocabulary: Standard Name Table v35 institution: National Centers for Environmental Information... geospatial_lat_min: 24.562532 geospatial_lat_max: 49.3542 geospatial_lon_min: -124.6875 geospatial_lon_max: -67.020836 geospatial_lat_units: degrees_north geospatial_lon_units: degrees_east ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
372244156 |