issue_comments: 430232027
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/pydata/xarray/issues/2488#issuecomment-430232027 | https://api.github.com/repos/pydata/xarray/issues/2488 | 430232027 | MDEyOklzc3VlQ29tbWVudDQzMDIzMjAyNw== | 16838898 | 2018-10-16T13:13:13Z | 2018-10-16T13:13:13Z | NONE | %%time def group_lat(x): # x is a DataFrame of group values # now find the value of the longitude box to append to the dictionary key value = np.ones(1) value[0] = x.lon.mean() idx = (np.abs(lon_cent - value)).argmin() lokey = lon_cent[idx] # longitude value of the box
geop_mean = geop1.groupby_bins('lon', lon_bin, labels=lon_cent).apply(group_lat)geop_mean = geop1.groupby_bins('lon', lon_bin, labels=lon_cent) geop_mean = dict(geop_mean) group into lat boxesl = 0 geo_grid = dict() for x in list(geop_mean.keys()): y = group_lat(geop_mean[x]) if l == 0: geo_grid = y else: geo_grid.update(y) l += 1 Now the data is sorted into boxes and still contains all metadataNow get the mean values for each boxl = 0 m = np.zeros((len(tuple(geo_grid.keys())),4)) d = np.asarray(list(geo_grid.keys())) gp = xr.Dataset({'geopot': (['lat','lon'], np.ones((lat_cent.shape[0], lon_cent.shape[0]))), 'z': (['lat','lon'], np.ones((lat_cent.shape[0], lon_cent.shape[0])))}, coords={'lon': (['lon'],lon_cent), 'lat': (['lat'],lat_cent)}) for k in range(d.shape[0]): e = tuple(d[k]) #m[l,2] = geo_grid[e].z.mean() gp['geopot'].loc[dict(lat=d[k][1], lon=d[k][0])] = geo_grid[e].geopot.mean() gp['z'].loc[dict(lat=d[k][1], lon=d[k][0])] = geo_grid[e].z.mean() #gp.loc[dict(lat=m[0,1], lon=m[0,0])] l +=1 |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
370183554 |