issue_comments: 417152163
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/pydata/xarray/issues/2288#issuecomment-417152163 | https://api.github.com/repos/pydata/xarray/issues/2288 | 417152163 | MDEyOklzc3VlQ29tbWVudDQxNzE1MjE2Mw== | 1828519 | 2018-08-30T00:37:51Z | 2018-08-30T00:37:51Z | CONTRIBUTOR | @karimbahgat Thanks for the info and questions. As for xarray, it is a generic container format (array + dimensions + coordinates for those dimensions + attributes) but resembles the format of data stored in netcdf files. It can technically hold any N-dimensional data. This issue in particular is what is a good "standard" way for multiple libraries to represent CRS information in xarray's objects. I think the lack of documentation is pycrs is my biggest hurdle right now as I don't know how I'm supposed to use the library, but I want to. It may also be that my use cases for CRS information are different than yours, but the structure of the package is not intuitive to me. But again a simple example of passing a PROJ.4 string to something and getting a CRS object would solve all that. I'll make some issues on pycrs when I get a chance (add travis/appveyor tests, add documentation, base classes for certain things, etc). For geotiff's CRS I think with most geotiff-reading libraries you load the CRS info as a PROJ.4 string. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
341331807 |