issue_comments: 409276937
This data as json
| html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| https://github.com/pydata/xarray/issues/2329#issuecomment-409276937 | https://api.github.com/repos/pydata/xarray/issues/2329 | 409276937 | MDEyOklzc3VlQ29tbWVudDQwOTI3NjkzNw== | 12278765 | 2018-07-31T16:08:33Z | 2018-07-31T16:08:33Z | NONE | I did some tests with my big netcdf. The chunking indeed makes a difference. ``` chunks = {'time': 'auto', 'lat': 'auto', 'lon': 'auto'} ds = xr.open_dataset('era5_precip.nc', chunks=chunks) ds.sum().load() real 161m37.119s user 33m9.720s sys 63m47.696s chunks = {'time': 1} ds = xr.open_dataset('era5_precip.nc', chunks=chunks) print(ds.sum().load()) real 109m55.839s user 303m40.665s sys 451m30.788s ``` I'll do some more tests with the calculation of the mean on the time axis, it might be more representative of what I want to do. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
345715825 |