issue_comments: 409172635
This data as json
| html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| https://github.com/pydata/xarray/issues/2329#issuecomment-409172635 | https://api.github.com/repos/pydata/xarray/issues/2329 | 409172635 | MDEyOklzc3VlQ29tbWVudDQwOTE3MjYzNQ== | 10050469 | 2018-07-31T10:25:16Z | 2018-07-31T14:18:29Z | MEMBER | Sorry for the confusion, I had an obvious mistake in my timing experiment above (forgot to do the actual computations...). The dimension order does make a difference: ```python import dask as da import xarray as xr d = xr.DataArray(da.array.zeros((1000, 721, 1440), chunks=(10, 721, 1440)), dims=('z', 'y', 'x')) d.to_netcdf('da.nc') # 8.3 Gb with xr.open_dataarray('da.nc', chunks={'z':10}) as d: %timeit d.sum().load() 3.94 s ± 95.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) with xr.open_dataarray('da.nc', chunks={'y':10}) as d: %timeit d.sum().load() 4.15 s ± 316 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) with xr.open_dataarray('da.nc', chunks={'x':10}) as d: %timeit d.sum().load() 1min 54s ± 1.43 s per loop (mean ± std. dev. of 7 runs, 1 loop each) with xr.open_dataarray('da.nc', chunks={'y':10, 'x':10}) as d: %timeit d.sum().load() 2min 23s ± 215 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) ``` |
{
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
345715825 |