issue_comments: 409172635
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/pydata/xarray/issues/2329#issuecomment-409172635 | https://api.github.com/repos/pydata/xarray/issues/2329 | 409172635 | MDEyOklzc3VlQ29tbWVudDQwOTE3MjYzNQ== | 10050469 | 2018-07-31T10:25:16Z | 2018-07-31T14:18:29Z | MEMBER | Sorry for the confusion, I had an obvious mistake in my timing experiment above (forgot to do the actual computations...). The dimension order does make a difference: ```python import dask as da import xarray as xr d = xr.DataArray(da.array.zeros((1000, 721, 1440), chunks=(10, 721, 1440)), dims=('z', 'y', 'x')) d.to_netcdf('da.nc') # 8.3 Gb with xr.open_dataarray('da.nc', chunks={'z':10}) as d: %timeit d.sum().load() 3.94 s ± 95.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) with xr.open_dataarray('da.nc', chunks={'y':10}) as d: %timeit d.sum().load() 4.15 s ± 316 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) with xr.open_dataarray('da.nc', chunks={'x':10}) as d: %timeit d.sum().load() 1min 54s ± 1.43 s per loop (mean ± std. dev. of 7 runs, 1 loop each) with xr.open_dataarray('da.nc', chunks={'y':10, 'x':10}) as d: %timeit d.sum().load() 2min 23s ± 215 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) ``` |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
345715825 |