issue_comments: 40737375
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/pydata/xarray/issues/66#issuecomment-40737375 | https://api.github.com/repos/pydata/xarray/issues/66 | 40737375 | MDEyOklzc3VlQ29tbWVudDQwNzM3Mzc1 | 1217238 | 2014-04-17T17:03:36Z | 2014-04-17T17:03:36Z | MEMBER | I did a little bit of research into the HDF5 file-format last night and how it maps on the NetCDF data model: https://www.unidata.ucar.edu/software/netcdf/docs/netcdf/NetCDF_002d4-Format.html HDF5 has a notion of "dimension scales" which implement shared dimensions. The bad news is that pytables does not support them, although h5py does. As @ToddSmall shows in his example above, pytables supports getting file images for HDF5 files, but unfortunately h5py does not implement file image operations. So it looks like there are not currently any existing solutions that will let us implement our data model in HDF5 with file images :(. On the plus side, it does look like it would be pretty simple to implement the NetCDF4 file format directly via h5py. This is something worth considering, because the codebase for the h5py project looks much cleaner than netCDF4-python and has better test coverage. I can also verify that it is straightforward to open and interpret NetCDF4 files via pytables or h5py. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
29453809 |