home / github / issue_comments

Menu
  • Search all tables
  • GraphQL API

issue_comments: 400905262

This data as json

html_url issue_url id node_id user created_at updated_at author_association body reactions performed_via_github_app issue
https://github.com/pydata/xarray/issues/2256#issuecomment-400905262 https://api.github.com/repos/pydata/xarray/issues/2256 400905262 MDEyOklzc3VlQ29tbWVudDQwMDkwNTI2Mg== 4338975 2018-06-28T04:12:47Z 2018-06-28T04:18:07Z NONE

Yes I agree with you I started out with the ds.to_zarr for each file, the problem was that each property of the cycle e.g. lat and long ended up in it's own file. one float with 250 cycles ended up with over 70,000 small files one my file system, because of cluster size they occupied over 100meg of hard disk. as there are over 4000 floats lots of small files are not going to be viable.

cycles[int(ds.CYCLE_NUMBER.values[0])-1]=ds

Yep this line is funny. CYCLE_NUMBER increments up with each cycle and starts at 1. Sometimes a cycle might be delayed and added at a later date, so did not want to make the assumption that the list of files had been sorted into the order of the float cycles, so instead I want to build an array of cycles in order. Also if a file is replaced by a newer version then I want it to overwrite the profile in the array

<xarray.Dataset> Dimensions: (N_CALIB: 1, N_HISTORY: 9, N_LEVELS: 69, N_PARAM: 3, N_PROF: 1) Dimensions without coordinates: N_CALIB, N_HISTORY, N_LEVELS, N_PARAM, N_PROF Data variables: DATA_TYPE object ... FORMAT_VERSION object ... HANDBOOK_VERSION object ... REFERENCE_DATE_TIME object ... DATE_CREATION object ... DATE_UPDATE object ... PLATFORM_NUMBER (N_PROF) object ... PROJECT_NAME (N_PROF) object ... PI_NAME (N_PROF) object ... STATION_PARAMETERS (N_PROF, N_PARAM) object ... CYCLE_NUMBER (N_PROF) float64 ... DIRECTION (N_PROF) object ... DATA_CENTRE (N_PROF) object ... DC_REFERENCE (N_PROF) object ... DATA_STATE_INDICATOR (N_PROF) object ... DATA_MODE (N_PROF) object ... PLATFORM_TYPE (N_PROF) object ... FLOAT_SERIAL_NO (N_PROF) object ... FIRMWARE_VERSION (N_PROF) object ... WMO_INST_TYPE (N_PROF) object ... JULD (N_PROF) datetime64[ns] ... JULD_QC (N_PROF) object ... JULD_LOCATION (N_PROF) datetime64[ns] ... LATITUDE (N_PROF) float64 ... LONGITUDE (N_PROF) float64 ... POSITION_QC (N_PROF) object ... POSITIONING_SYSTEM (N_PROF) object ... PROFILE_PRES_QC (N_PROF) object ... PROFILE_TEMP_QC (N_PROF) object ... PROFILE_PSAL_QC (N_PROF) object ... VERTICAL_SAMPLING_SCHEME (N_PROF) object ... CONFIG_MISSION_NUMBER (N_PROF) float64 ... PRES (N_PROF, N_LEVELS) float32 ... PRES_QC (N_PROF, N_LEVELS) object ... PRES_ADJUSTED (N_PROF, N_LEVELS) float32 ... PRES_ADJUSTED_QC (N_PROF, N_LEVELS) object ... TEMP (N_PROF, N_LEVELS) float32 ... TEMP_QC (N_PROF, N_LEVELS) object ... TEMP_ADJUSTED (N_PROF, N_LEVELS) float32 ... TEMP_ADJUSTED_QC (N_PROF, N_LEVELS) object ... PSAL (N_PROF, N_LEVELS) float32 ... PSAL_QC (N_PROF, N_LEVELS) object ... PSAL_ADJUSTED (N_PROF, N_LEVELS) float32 ... PSAL_ADJUSTED_QC (N_PROF, N_LEVELS) object ... PRES_ADJUSTED_ERROR (N_PROF, N_LEVELS) float32 ... TEMP_ADJUSTED_ERROR (N_PROF, N_LEVELS) float32 ... PSAL_ADJUSTED_ERROR (N_PROF, N_LEVELS) float32 ... PARAMETER (N_PROF, N_CALIB, N_PARAM) object ... SCIENTIFIC_CALIB_EQUATION (N_PROF, N_CALIB, N_PARAM) object ... SCIENTIFIC_CALIB_COEFFICIENT (N_PROF, N_CALIB, N_PARAM) object ... SCIENTIFIC_CALIB_COMMENT (N_PROF, N_CALIB, N_PARAM) object ... SCIENTIFIC_CALIB_DATE (N_PROF, N_CALIB, N_PARAM) object ... HISTORY_INSTITUTION (N_HISTORY, N_PROF) object ... HISTORY_STEP (N_HISTORY, N_PROF) object ... HISTORY_SOFTWARE (N_HISTORY, N_PROF) object ... HISTORY_SOFTWARE_RELEASE (N_HISTORY, N_PROF) object ... HISTORY_REFERENCE (N_HISTORY, N_PROF) object ... HISTORY_DATE (N_HISTORY, N_PROF) object ... HISTORY_ACTION (N_HISTORY, N_PROF) object ... HISTORY_PARAMETER (N_HISTORY, N_PROF) object ... HISTORY_START_PRES (N_HISTORY, N_PROF) float32 ... HISTORY_STOP_PRES (N_HISTORY, N_PROF) float32 ... HISTORY_PREVIOUS_VALUE (N_HISTORY, N_PROF) float32 ... HISTORY_QCTEST (N_HISTORY, N_PROF) object ... Attributes: title: Argo float vertical profile institution: CSIRO source: Argo float history: 2013-07-30T09:13:35Z creation;2014-08-18T19:33:14Z ... references: http://www.argodatamgt.org/Documentation user_manual_version: 3.1 Conventions: Argo-3.1 CF-1.6 featureType: trajectoryProfile

A single float file end up with 194 small files in 68 directories total size 30.4 KB (31,223 bytes) but size on disk 776 KB (794,624 bytes)

I have tried

ds = xr.open_mfdataset(r"C:\Users\mor582\Documents\projects\argo\D1901324\*_*.nc")

but fails with: ValueError: arguments without labels along dimension 'N_HISTORY' cannot be aligned because they have different dimension sizes: {9, 11, 6}

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  336458472
Powered by Datasette · Queries took 0.788ms · About: xarray-datasette