issue_comments: 398157337
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/pydata/xarray/issues/2237#issuecomment-398157337 | https://api.github.com/repos/pydata/xarray/issues/2237 | 398157337 | MDEyOklzc3VlQ29tbWVudDM5ODE1NzMzNw== | 1217238 | 2018-06-18T18:50:39Z | 2018-06-18T18:50:48Z | MEMBER | The source of the indexing operation that brings all the chunks together is the So basically the issue comes down to indexing with dask.array, which creates a single chunk when integers indices are not all in order: ``` import dask.array as da import numpy as np x = da.ones(4, chunks=1) print(x[np.arange(4)]) dask.array<getitem, shape=(4,), dtype=float64, chunksize=(1,)>print(x[np.arange(4)[::-1]]) dask.array<getitem, shape=(4,), dtype=float64, chunksize=(4,)>``` As a work-around in xarray, we could use explicit indexing + concatenation. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
333312849 |