issue_comments: 384707323
This data as json
| html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| https://github.com/pydata/xarray/issues/2063#issuecomment-384707323 | https://api.github.com/repos/pydata/xarray/issues/2063 | 384707323 | MDEyOklzc3VlQ29tbWVudDM4NDcwNzMyMw== | 1217238 | 2018-04-26T16:35:24Z | 2018-04-26T18:21:40Z | MEMBER | I think the following script should reproduce the issue and identify which library is the source of the issue: ``` import dask.array as da import numpy as np import pandas as pd import bottleneck rng = np.random.RandomState(0) x = np.concatenate([rng.randn(16, 8).astype(np.float32), np.nan * np.zeros((4, 8)).astype(np.float32)]) print('numpy', np.nanvar(x)) print('dask', da.nanvar(da.from_array(x, 4)).compute()) print('pandas', pd.Series(x.ravel()).var(ddof=0)) print('bottleneck', bottleneck.nanvar(x)) ``` On my laptop, this prints:
|
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
314670220 |