home / github / issue_comments

Menu
  • Search all tables
  • GraphQL API

issue_comments: 381326874

This data as json

html_url issue_url id node_id user created_at updated_at author_association body reactions performed_via_github_app issue
https://github.com/pydata/xarray/issues/2050#issuecomment-381326874 https://api.github.com/repos/pydata/xarray/issues/2050 381326874 MDEyOklzc3VlQ29tbWVudDM4MTMyNjg3NA== 199050 2018-04-14T12:48:35Z 2018-04-14T12:48:35Z CONTRIBUTOR

Same problem here. Full log:

[ 69s] =================================== FAILURES =================================== [ 69s] ______________ GenericNetCDFDataTest.test_append_overwrite_values ______________ [ 69s] [ 69s] self = <xarray.tests.test_backends.GenericNetCDFDataTest testMethod=test_append_overwrite_values> [ 69s] [ 69s] def test_append_overwrite_values(self): [ 69s] # regression for GH1215 [ 69s] data = create_test_data() [ 69s] with create_tmp_file(allow_cleanup_failure=False) as tmp_file: [ 69s] self.save(data, tmp_file, mode='w') [ 69s] data['var2'][:] = -999 [ 69s] data['var9'] = data['var2'] * 3 [ 69s] > self.save(data[['var2', 'var9']], tmp_file, mode='a') [ 69s] [ 69s] xarray/tests/test_backends.py:796: [ 69s] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [ 69s] xarray/tests/test_backends.py:162: in save [ 69s] **kwargs) [ 69s] xarray/core/dataset.py:1137: in to_netcdf [ 69s] unlimited_dims=unlimited_dims) [ 69s] xarray/backends/api.py:657: in to_netcdf [ 69s] unlimited_dims=unlimited_dims) [ 69s] xarray/core/dataset.py:1074: in dump_to_store [ 69s] unlimited_dims=unlimited_dims) [ 69s] xarray/backends/common.py:363: in store [ 69s] unlimited_dims=unlimited_dims) [ 69s] xarray/backends/common.py:402: in set_variables [ 69s] self.writer.add(source, target) [ 69s] xarray/backends/common.py:265: in add [ 69s] target[...] = source [ 69s] xarray/backends/scipy_.py:61: in __setitem__ [ 69s] data[key] = value [ 69s] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [ 69s] [ 69s] self = <scipy.io.netcdf.netcdf_variable object at 0x7f0f9970d090> [ 69s] index = Ellipsis [ 69s] data = array([[-999., -999., -999., -999., -999., -999., -999., -999., -999.], [ 69s] ...999.], [ 69s] [-999., -999., -999., -999., -999., -999., -999., -999., -999.]]) [ 69s] [ 69s] def __setitem__(self, index, data): [ 69s] if self.maskandscale: [ 69s] missing_value = ( [ 69s] self._get_missing_value() or [ 69s] getattr(data, 'fill_value', 999999)) [ 69s] self._attributes.setdefault('missing_value', missing_value) [ 69s] self._attributes.setdefault('_FillValue', missing_value) [ 69s] data = ((data - self._attributes.get('add_offset', 0.0)) / [ 69s] self._attributes.get('scale_factor', 1.0)) [ 69s] data = np.ma.asarray(data).filled(missing_value) [ 69s] if self._typecode not in 'fd' and data.dtype.kind == 'f': [ 69s] data = np.round(data) [ 69s] [ 69s] # Expand data for record vars? [ 69s] if self.isrec: [ 69s] if isinstance(index, tuple): [ 69s] rec_index = index[0] [ 69s] else: [ 69s] rec_index = index [ 69s] if isinstance(rec_index, slice): [ 69s] recs = (rec_index.start or 0) + len(data) [ 69s] else: [ 69s] recs = rec_index + 1 [ 69s] if recs > len(self.data): [ 69s] shape = (recs,) + self._shape[1:] [ 69s] # Resize in-place does not always work since [ 69s] # the array might not be single-segment [ 69s] try: [ 69s] self.data.resize(shape) [ 69s] except ValueError: [ 69s] self.__dict__['data'] = np.resize(self.data, shape).astype(self.data.dtype) [ 69s] > self.data[index] = data [ 69s] E ValueError: assignment destination is read-only [ 69s] [ 69s] /usr/lib64/python2.7/site-packages/scipy/io/netcdf.py:996: ValueError [ 69s] ___________________ GenericNetCDFDataTest.test_append_write ____________________ [ 69s] [ 69s] self = <xarray.tests.test_backends.GenericNetCDFDataTest testMethod=test_append_write> [ 69s] [ 69s] def test_append_write(self): [ 69s] # regression for GH1215 [ 69s] data = create_test_data() [ 69s] > with self.roundtrip_append(data) as actual: [ 69s] [ 69s] xarray/tests/test_backends.py:786: [ 69s] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [ 69s] /usr/lib64/python2.7/contextlib.py:17: in __enter__ [ 69s] return self.gen.next() [ 69s] xarray/tests/test_backends.py:155: in roundtrip_append [ 69s] self.save(data[[key]], path, mode=mode, **save_kwargs) [ 69s] xarray/tests/test_backends.py:162: in save [ 69s] **kwargs) [ 69s] xarray/core/dataset.py:1137: in to_netcdf [ 69s] unlimited_dims=unlimited_dims) [ 69s] xarray/backends/api.py:657: in to_netcdf [ 69s] unlimited_dims=unlimited_dims) [ 69s] xarray/core/dataset.py:1074: in dump_to_store [ 69s] unlimited_dims=unlimited_dims) [ 69s] xarray/backends/common.py:363: in store [ 69s] unlimited_dims=unlimited_dims) [ 69s] xarray/backends/common.py:402: in set_variables [ 69s] self.writer.add(source, target) [ 69s] xarray/backends/common.py:265: in add [ 69s] target[...] = source [ 69s] xarray/backends/scipy_.py:61: in __setitem__ [ 69s] data[key] = value [ 69s] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [ 69s] [ 69s] self = <scipy.io.netcdf.netcdf_variable object at 0x7f0f991df910> [ 69s] index = Ellipsis, data = array([0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. ]) [ 69s] [ 69s] def __setitem__(self, index, data): [ 69s] if self.maskandscale: [ 69s] missing_value = ( [ 69s] self._get_missing_value() or [ 69s] getattr(data, 'fill_value', 999999)) [ 69s] self._attributes.setdefault('missing_value', missing_value) [ 69s] self._attributes.setdefault('_FillValue', missing_value) [ 69s] data = ((data - self._attributes.get('add_offset', 0.0)) / [ 69s] self._attributes.get('scale_factor', 1.0)) [ 69s] data = np.ma.asarray(data).filled(missing_value) [ 69s] if self._typecode not in 'fd' and data.dtype.kind == 'f': [ 69s] data = np.round(data) [ 69s] [ 69s] # Expand data for record vars? [ 69s] if self.isrec: [ 69s] if isinstance(index, tuple): [ 69s] rec_index = index[0] [ 69s] else: [ 69s] rec_index = index [ 69s] if isinstance(rec_index, slice): [ 69s] recs = (rec_index.start or 0) + len(data) [ 69s] else: [ 69s] recs = rec_index + 1 [ 69s] if recs > len(self.data): [ 69s] shape = (recs,) + self._shape[1:] [ 69s] # Resize in-place does not always work since [ 69s] # the array might not be single-segment [ 69s] try: [ 69s] self.data.resize(shape) [ 69s] except ValueError: [ 69s] self.__dict__['data'] = np.resize(self.data, shape).astype(self.data.dtype) [ 69s] > self.data[index] = data [ 69s] E ValueError: assignment destination is read-only [ 69s] [ 69s] /usr/lib64/python2.7/site-packages/scipy/io/netcdf.py:996: ValueError [ 69s] _______ GenericNetCDFDataTestAutocloseTrue.test_append_overwrite_values ________ [ 69s] [ 69s] self = <xarray.tests.test_backends.GenericNetCDFDataTestAutocloseTrue testMethod=test_append_overwrite_values> [ 69s] [ 69s] def test_append_overwrite_values(self): [ 69s] # regression for GH1215 [ 69s] data = create_test_data() [ 69s] with create_tmp_file(allow_cleanup_failure=False) as tmp_file: [ 69s] self.save(data, tmp_file, mode='w') [ 69s] data['var2'][:] = -999 [ 69s] data['var9'] = data['var2'] * 3 [ 69s] > self.save(data[['var2', 'var9']], tmp_file, mode='a') [ 69s] [ 69s] xarray/tests/test_backends.py:796: [ 69s] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [ 69s] xarray/tests/test_backends.py:162: in save [ 69s] **kwargs) [ 69s] xarray/core/dataset.py:1137: in to_netcdf [ 69s] unlimited_dims=unlimited_dims) [ 69s] xarray/backends/api.py:657: in to_netcdf [ 69s] unlimited_dims=unlimited_dims) [ 69s] xarray/core/dataset.py:1074: in dump_to_store [ 69s] unlimited_dims=unlimited_dims) [ 69s] xarray/backends/common.py:363: in store [ 69s] unlimited_dims=unlimited_dims) [ 69s] xarray/backends/common.py:402: in set_variables [ 69s] self.writer.add(source, target) [ 69s] xarray/backends/common.py:265: in add [ 69s] target[...] = source [ 69s] xarray/backends/scipy_.py:61: in __setitem__ [ 69s] data[key] = value [ 69s] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [ 69s] [ 69s] self = <scipy.io.netcdf.netcdf_variable object at 0x7f0f9aca4fd0> [ 69s] index = Ellipsis [ 69s] data = array([[-999., -999., -999., -999., -999., -999., -999., -999., -999.], [ 69s] ...999.], [ 69s] [-999., -999., -999., -999., -999., -999., -999., -999., -999.]]) [ 69s] [ 69s] def __setitem__(self, index, data): [ 69s] if self.maskandscale: [ 69s] missing_value = ( [ 69s] self._get_missing_value() or [ 69s] getattr(data, 'fill_value', 9[ 64.291734] serial8250: too much work for irq4 [ 69s] 99999)) [ 69s] self._attributes.setdefault('missing_value', missing_value) [ 69s] self._attributes.setdefault('_FillValue', missing_value) [ 69s] data = ((data - self._attributes.get('add_offset', 0.0)) / [ 69s] self._attributes.get('scale_factor', 1.0)) [ 69s] data = np.ma.asarray(data).filled(missing_value) [ 69s] if self._typecode not in 'fd' and data.dtype.kind == 'f': [ 69s] data = np.round(data) [ 69s] [ 69s] # Expand data for record vars? [ 69s] if self.isrec: [ 69s] if isinstance(index, tuple): [ 69s] rec_index = index[0] [ 69s] else: [ 69s] rec_index = index [ 69s] if isinstance(rec_index, slice): [ 69s] recs = (rec_index.start or 0) + len(data) [ 69s] else: [ 69s] recs = rec_index + 1 [ 69s] if recs > len(self.data): [ 69s] shape = (recs,) + self._shape[1:] [ 69s] # Resize in-place does not always work since [ 69s] # the array might not be single-segment [ 69s] try: [ 69s] self.data.resize(shape) [ 69s] except ValueError: [ 69s] self.__dict__['data'] = np.resize(self.data, shape).astype(self.data.dtype) [ 69s] > self.data[index] = data [ 69s] E ValueError: assignment destination is read-only [ 69s] [ 69s] /usr/lib64/python2.7/site-packages/scipy/io/netcdf.py:996: ValueError [ 69s] _____________ GenericNetCDFDataTestAutocloseTrue.test_append_write _____________ [ 69s] [ 69s] self = <xarray.tests.test_backends.GenericNetCDFDataTestAutocloseTrue testMethod=test_append_write> [ 69s] [ 69s] def test_append_write(self): [ 69s] # regression for GH1215 [ 69s] data = create_test_data() [ 69s] > with self.roundtrip_append(data) as actual: [ 69s] [ 69s] xarray/tests/test_backends.py:786: [ 69s] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [ 69s] /usr/lib64/python2.7/contextlib.py:17: in __enter__ [ 69s] return self.gen.next() [ 69s] xarray/tests/test_backends.py:155: in roundtrip_append [ 69s] self.save(data[[key]], path, mode=mode, **save_kwargs) [ 69s] xarray/tests/test_backends.py:162: in save [ 69s] **kwargs) [ 69s] xarray/core/dataset.py:1137: in to_netcdf [ 69s] unlimited_dims=unlimited_dims) [ 69s] xarray/backends/api.py:657: in to_netcdf [ 69s] unlimited_dims=unlimited_dims) [ 69s] xarray/core/dataset.py:1074: in dump_to_store [ 69s] unlimited_dims=unlimited_dims) [ 69s] xarray/backends/common.py:363: in store [ 69s] unlimited_dims=unlimited_dims) [ 69s] xarray/backends/common.py:402: in set_variables [ 69s] self.writer.add(source, target) [ 69s] xarray/backends/common.py:265: in add [ 69s] target[...] = source [ 69s] xarray/backends/scipy_.py:61: in __setitem__ [ 69s] data[key] = value [ 69s] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [ 69s] [ 69s] self = <scipy.io.netcdf.netcdf_variable object at 0x7f0f992c80d0> [ 69s] index = Ellipsis, data = array([0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. ]) [ 69s] [ 69s] def __setitem__(self, index, data): [ 69s] if self.maskandscale: [ 69s] missing_value = ( [ 69s] self._get_missing_value() or [ 69s] getattr(data, 'fill_value', 999999)) [ 69s] self._attributes.setdefault('missing_value', missing_value) [ 69s] self._attributes.setdefault('_FillValue', missing_value) [ 69s] data = ((data - self._attributes.get('add_offset', 0.0)) / [ 69s] self._attributes.get('scale_factor', 1.0)) [ 69s] data = np.ma.asarray(data).filled(missing_value) [ 69s] if self._typecode not in 'fd' and data.dtype.kind == 'f': [ 69s] data = np.round(data) [ 69s] [ 69s] # Expand data for record vars? [ 69s] if self.isrec: [ 69s] if isinstance(index, tuple): [ 69s] rec_index = index[0] [ 69s] else: [ 69s] rec_index = index [ 69s] if isinstance(rec_index, slice): [ 69s] recs = (rec_index.start or 0) + len(data) [ 69s] else: [ 69s] recs = rec_index + 1 [ 69s] if recs > len(self.data): [ 69s] shape = (recs,) + self._shape[1:] [ 69s] # Resize in-place does not always work since [ 69s] # the array might not be single-segment [ 69s] try: [ 69s] self.data.resize(shape) [ 69s] except ValueError: [ 69s] self.__dict__['data'] = np.resize(self.data, shape).astype(self.data.dtype) [ 69s] > self.data[index] = data [ 69s] E ValueError: assignment destination is read-only [ 69s] [ 69s] /usr/lib64/python2.7/site-packages/scipy/io/netcdf.py:996: ValueError [ 69s] =============================== warnings summary =============================== [ 69s] xarray/tests/test_backends.py::ScipyInMemoryDataTest::test_default_fill_value [ 69s] /home/abuild/rpmbuild/BUILD/xarray-0.10.3/xarray/conventions.py:748: SerializationWarning: saving variable x with floating point data as an integer dtype without any _FillValue to use for NaNs [ 69s] for k, v in iteritems(variables)) [ 69s] [ 69s] xarray/tests/test_backends.py::ScipyInMemoryDataTest::test_pickle [ 69s] /usr/lib64/python2.7/site-packages/scipy/io/netcdf.py:299: RuntimeWarning: Cannot close a netcdf_file opened with mmap=True, when netcdf_variables or arrays referring to its data still exist. All data arrays obtained from such files refer directly to data on disk, and must be copied before the file can be cleanly closed. (See netcdf_file docstring for more information on mmap.) [ 69s] ), category=RuntimeWarning) [ 69s] [ 69s] xarray/tests/test_dataarray.py::TestDataArray::test_reindex_regressions [ 69s] /home/abuild/rpmbuild/BUILD/xarray-0.10.3/xarray/core/dataarray.py:882: FutureWarning: Indexer has dimensions ('time2',) that are different from that to be indexed along time. This will behave differently in the future. [ 69s] method=method, tolerance=tolerance, copy=copy, **indexers) [ 69s] [ 69s] xarray/tests/test_missing.py::test_scipy_methods_function [ 69s] /usr/lib64/python2.7/site-packages/scipy/interpolate/polyint.py:511: RuntimeWarning: overflow encountered in multiply [ 69s] self.wi[:j] *= (self.xi[j]-self.xi[:j]) [ 69s] /usr/lib64/python2.7/site-packages/scipy/interpolate/polyint.py:512: RuntimeWarning: overflow encountered in reduce [ 69s] self.wi[j] = np.multiply.reduce(self.xi[:j]-self.xi[j]) [ 69s] /usr/lib64/python2.7/site-packages/scipy/interpolate/polyint.py:609: RuntimeWarning: invalid value encountered in true_divide [ 69s] p = np.dot(c,self.yi)/np.sum(c,axis=-1)[...,np.newaxis] [ 69s] /usr/lib64/python2.7/site-packages/scipy/interpolate/polyint.py:324: RuntimeWarning: overflow encountered in multiply [ 69s] pi = w*pi [ 69s] /usr/lib64/python2.7/site-packages/scipy/interpolate/polyint.py:325: RuntimeWarning: invalid value encountered in multiply [ 69s] p += pi[:,np.newaxis] * self.c[k] [ 69s] /usr/lib64/python2.7/site-packages/scipy/interpolate/polyint.py:325: RuntimeWarning: invalid value encountered in add [ 69s] p += pi[:,np.newaxis] * self.c[k] [ 69s] [ 69s] xarray/tests/test_variable.py::TestVariable::test_index_0d_not_a_time [ 69s] /home/abuild/rpmbuild/BUILD/xarray-0.10.3/xarray/core/duck_array_ops.py:137: FutureWarning: In the future, 'NAT == x' and 'x == NAT' will always be False. [ 69s] flag_array = (arr1 == arr2) [ 69s] /home/abuild/rpmbuild/BUILD/xarray-0.10.3/xarray/tests/test_variable.py:141: FutureWarning: In the future, 'NAT == x' and 'x == NAT' will always be False. [ 69s] assert variable.values[0] == expected_value0 [ 69s] /home/abuild/rpmbuild/BUILD/xarray-0.10.3/xarray/tests/test_variable.py:142: FutureWarning: In the future, 'NAT == x' and 'x == NAT' will always be False. [ 69s] assert variable[0].values == expected_value0 [ 69s] [ 69s] xarray/tests/test_variable.py::TestVariableWithDask::test_index_0d_not_a_time [ 69s] /usr/lib/python2.7/site-packages/dask/local.py:271: FutureWarning: In the future, 'NAT == x' and 'x == NAT' will always be False. [ 69s] return func(*args2) [ 69s] [ 69s] -- Docs: http://doc.pytest.org/en/latest/warnings.html [ 69s] 4 failed, 2621 passed, 1443 skipped, 19 xfailed, 4 xpassed, 13 warnings in 44.85 seconds

With python-netCDF4 == 1.3.1, scipy == 1.0.0, netcdf == 4.4.1

Probably a conditional skip is a (short term) solution?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  313040371
Powered by Datasette · Queries took 0.976ms · About: xarray-datasette