home / github / issue_comments

Menu
  • GraphQL API
  • Search all tables

issue_comments: 376689828

This data as json

html_url issue_url id node_id user created_at updated_at author_association body reactions performed_via_github_app issue
https://github.com/pydata/xarray/pull/1983#issuecomment-376689828 https://api.github.com/repos/pydata/xarray/issues/1983 376689828 MDEyOklzc3VlQ29tbWVudDM3NjY4OTgyOA== 2443309 2018-03-27T21:59:35Z 2018-03-27T21:59:35Z MEMBER

Have you tested this with both a local system and an HPC cluster?

I have. See below for a simple example using this feature on Cheyenne.

```python In [1]: import xarray as xr ...: ...: import glob ...:

In [2]: pattern = '/glade/u/home/jhamman/workdir/LOCA_daily/met_data/CESM1-BGC/16th/rcp45/r1i1p1//nc'

In [3]: len(glob.glob(pattern)) Out[3]: 285

In [4]: %time ds = xr.open_mfdataset(pattern) CPU times: user 15.5 s, sys: 2.62 s, total: 18.1 s Wall time: 42.4 s

In [5]: ds.close()

In [6]: %time ds = xr.open_mfdataset(pattern, parallel=True) CPU times: user 18.4 s, sys: 5.28 s, total: 23.6 s Wall time: 30.7 s

In [7]: ds.close()

In [8]: from dask.distributed import Client

In [9]: client = Client() clien In [10]: client Out[10]: <Client: scheduler='tcp://127.0.0.1:39853' processes=72 cores=72>

In [11]: %time ds = xr.open_mfdataset(pattern, parallel=True, autoclose=True) CPU times: user 10.8 s, sys: 808 ms, total: 11.6 s Wall time: 12.4 s ```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  304589831
Powered by Datasette · Queries took 0.685ms · About: xarray-datasette