issue_comments: 364529325
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/pydata/xarray/pull/1899#issuecomment-364529325 | https://api.github.com/repos/pydata/xarray/issues/1899 | 364529325 | MDEyOklzc3VlQ29tbWVudDM2NDUyOTMyNQ== | 1217238 | 2018-02-09T19:07:39Z | 2018-02-09T19:07:39Z | MEMBER | I figured out how to consolidate two vectorized indexers, as long as they don't include any def index_vectorized_indexer(old_indexer, applied_indexer): return tuple(o[applied_indexer] for o in np.broadcast_arrays(*old_indexer)) for x, old, applied in [ (np.arange(10), (np.arange(2, 7),), (np.array([3, 2, 1]),)), (np.arange(10), (np.arange(6).reshape(2, 3),), (np.arange(2), np.arange(1, 3))), (-np.arange(1, 21).reshape(4, 5), (np.arange(3)[:, None], np.arange(4)[None, :]), (np.arange(3), np.arange(3))), ]: new_key = index_vectorized_indexer(old, applied) np.testing.assert_array_equal(x[old][applied], x[new_key]) ``` We could probably make this work with |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
295838143 |