issue_comments: 345091139
This data as json
| html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| https://github.com/pydata/xarray/pull/1528#issuecomment-345091139 | https://api.github.com/repos/pydata/xarray/issues/1528 | 345091139 | MDEyOklzc3VlQ29tbWVudDM0NTA5MTEzOQ== | 1217238 | 2017-11-16T23:02:14Z | 2017-11-16T23:02:14Z | MEMBER |
We will need to write new adapter code to map xarray's explicit indexer classes onto the appropriate zarr methods, e.g., ```python def getitem(self, key): array = self.get_arraay() if isinstance(key, BasicIndexer): return array[key.tuple] elif isinstance(key, VectorizedIndexer): return array.vindex[_replace_slices_with_arrays(key.tuple, self.shape)] else: assert isinstance(key, OuterIndexer) return array.oindex[key.tuple] untested, but I think this does the appropriate shape munging to make slicesappear as the last axes of the result arraydef _replace_slice_with_arrays(key, shape): num_slices = sum(1 for k in key if isinstance(k, slice)) num_arrays = len(shape) - num_slices new_key = [] slice_count = 0 for k, size in zip(key, shape): if isinstance(k, slice): array = np.arange(*k.indices(size)) sl = [np.newaxis] * len(shape) sl[num_arrays + slice_count] = np.newaxis k = array[sl] slice_count += 1 else: assert isinstance(k, numpy.ndarray) k = k[(slice(None),) * num_arrays + (np.newaxis,) * num_slices] new_key.append(k) return tuple(new_key) ``` |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
253136694 |