home / github / issue_comments

Menu
  • Search all tables
  • GraphQL API

issue_comments: 328690191

This data as json

html_url issue_url id node_id user created_at updated_at author_association body reactions performed_via_github_app issue
https://github.com/pydata/xarray/issues/1279#issuecomment-328690191 https://api.github.com/repos/pydata/xarray/issues/1279 328690191 MDEyOklzc3VlQ29tbWVudDMyODY5MDE5MQ== 2443309 2017-09-11T23:48:58Z 2017-09-12T04:13:15Z MEMBER

@darothen and @shoyer -

Here's a little wrapper function that does the dask and bottleneck piece...

Python def dask_rolling_wrapper(moving_func, a, window, min_count=None, axis=-1): '''wrapper to apply bottleneck moving window funcs on dask arrays''' # inputs for ghost if axis < 0: axis = a.ndim + axis depth = {d: 0 for d in range(a.ndim)} depth[axis] = window - 1 boundary = {d: np.nan for d in range(a.ndim)} # create ghosted arrays ag = da.ghost.ghost(a, depth=depth, boundary=boundary) # apply rolling func out = ag.map_blocks(moving_func, window, min_count=min_count, axis=axis, dtype=a.dtype) # trim array result = da.ghost.trim_internal(out, depth) return result

I don't think this would be all that difficult to drop into our current Rolling class.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  208903781
Powered by Datasette · Queries took 0.601ms · About: xarray-datasette