issue_comments: 275979038
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/pydata/xarray/issues/277#issuecomment-275979038 | https://api.github.com/repos/pydata/xarray/issues/277 | 275979038 | MDEyOklzc3VlQ29tbWVudDI3NTk3OTAzOA== | 1562854 | 2017-01-30T04:42:12Z | 2017-01-30T04:42:12Z | CONTRIBUTOR | OK, great! I figured it out. Something like the below works; @rabernat had pointed to a similar solution, but I didn't quite understand what ``` import xmitgcm import xarray as xr data = xmitgcm.open_mdsdataset(dirname='./',prefix={'T'},iters=12600,read_grid=True,geometry='cartesian',endian='<', chunks={'Z':1,'time':1}) def interpolateAtDepth(T,x0,y0,x,y):
import scipy.interpolate
if np.shape(T)[-1]>1:
xout=np.zeros((1,1,ny,nx)) x, y, nx, ny are determined elsewhere, but set the new grid...tm = data['T'].data.map_blocks(interpolateAtDepth,data['XC'].values,data['YC'].values,x,y,chunks=(1,1,ny,nx)) ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
48301141 |