issue_comments: 264133419
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/pydata/xarray/issues/1143#issuecomment-264133419 | https://api.github.com/repos/pydata/xarray/issues/1143 | 264133419 | MDEyOklzc3VlQ29tbWVudDI2NDEzMzQxOQ== | 5629061 | 2016-12-01T10:15:21Z | 2016-12-01T10:15:21Z | NONE | The pandas docs do seem to say that conversion to timedelta64[D] (or other frequencies) is possible - see: http://pandas.pydata.org/pandas-docs/stable/timedeltas.html#frequency-conversion Also here's a more realistic example of why this is problematic for me - I have a sequence of dates and I want to calculate the difference between them in days: possible in pandas, but not possible in xarray without first reverting to pandas/numpy types ``` dates = pandas.Series([datetime.date(2016, 01, 10), datetime.date(2016, 01, 20), datetime.date(2016, 01, 25)]).astype('datetime64[ns]') dates.diff().astype('timedelta64[D]').astype(float) returns0 NaN1 10.02 5.0dtype: float6xarray.DataArray(dates).diff(dim = 'dim_0').astype('timedelta64[D]').astype(float) returns<xarray.DataArray (dim_0: 2)>array([ 8.64000000e+14, 4.32000000e+14])Coordinates:* dim_0 (dim_0) int64 1 2``` Again the xarray result is in ns rather than days. Thanks |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
192325490 |