issue_comments: 261841025
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/pydata/xarray/pull/1128#issuecomment-261841025 | https://api.github.com/repos/pydata/xarray/issues/1128 | 261841025 | MDEyOklzc3VlQ29tbWVudDI2MTg0MTAyNQ== | 1217238 | 2016-11-21T04:36:02Z | 2016-11-21T04:36:02Z | MEMBER | This isn't yet working with dask multiprocessing for reading a netCDF4 file with in-memory compression. I'm not quite sure why: ``` In [5]: from multiprocessing.pool import Pool In [7]: ds = xr.open_dataset('big-random.nc', lock=False, chunks={'x': 2500}) In [8]: dask.set_options(pool=Pool(4)) Out[8]: <dask.context.set_options at 0x1087c3898> In [9]: %time ds.sum().compute()RuntimeError Traceback (most recent call last) <ipython-input-9-4c43356c48db> in <module>() ----> 1 get_ipython().magic('time ds.sum().compute()') /Users/shoyer/conda/envs/xarray-dev/lib/python3.5/site-packages/IPython/core/interactiveshell.py in magic(self, arg_s) 2156 magic_name, _, magic_arg_s = arg_s.partition(' ') 2157 magic_name = magic_name.lstrip(prefilter.ESC_MAGIC) -> 2158 return self.run_line_magic(magic_name, magic_arg_s) 2159 2160 #------------------------------------------------------------------------- /Users/shoyer/conda/envs/xarray-dev/lib/python3.5/site-packages/IPython/core/interactiveshell.py in run_line_magic(self, magic_name, line) 2077 kwargs['local_ns'] = sys._getframe(stack_depth).f_locals 2078 with self.builtin_trap: -> 2079 result = fn(args,*kwargs) 2080 return result 2081 <decorator-gen-59> in time(self, line, cell, local_ns) /Users/shoyer/conda/envs/xarray-dev/lib/python3.5/site-packages/IPython/core/magic.py in <lambda>(f, a, k) 186 # but it's overkill for just that one bit of state. 187 def magic_deco(arg): --> 188 call = lambda f, a, k: f(*a, k) 189 190 if callable(arg): /Users/shoyer/conda/envs/xarray-dev/lib/python3.5/site-packages/IPython/core/magics/execution.py in time(self, line, cell, local_ns) 1174 if mode=='eval': 1175 st = clock2() -> 1176 out = eval(code, glob, local_ns) 1177 end = clock2() 1178 else: <timed eval> in <module>() /Users/shoyer/dev/xarray/xarray/core/dataset.py in compute(self) 348 """ 349 new = self.copy(deep=False) --> 350 return new.load() 351 352 @classmethod /Users/shoyer/dev/xarray/xarray/core/dataset.py in load(self) 325 326 # evaluate all the dask arrays simultaneously --> 327 evaluated_data = da.compute(*lazy_data.values()) 328 329 for k, data in zip(lazy_data, evaluated_data): /Users/shoyer/conda/envs/xarray-dev/lib/python3.5/site-packages/dask/base.py in compute(args, kwargs) 176 dsk = merge(var.dask for var in variables) 177 keys = [var._keys() for var in variables] --> 178 results = get(dsk, keys, *kwargs) 179 180 results_iter = iter(results) /Users/shoyer/conda/envs/xarray-dev/lib/python3.5/site-packages/dask/threaded.py in get(dsk, result, cache, num_workers, kwargs) 67 results = get_async(pool.apply_async, len(pool._pool), dsk, result, 68 cache=cache, get_id=_thread_get_id, ---> 69 kwargs) 70 71 # Cleanup pools associated to dead threads /Users/shoyer/conda/envs/xarray-dev/lib/python3.5/site-packages/dask/async.py in get_async(apply_async, num_workers, dsk, result, cache, get_id, raise_on_exception, rerun_exceptions_locally, callbacks, dumps, loads, **kwargs) 500 _execute_task(task, data) # Re-execute locally 501 else: --> 502 raise(remote_exception(res, tb)) 503 state['cache'][key] = res 504 finish_task(dsk, key, state, results, keyorder.get) RuntimeError: NetCDF: HDF error TracebackFile "/Users/shoyer/conda/envs/xarray-dev/lib/python3.5/site-packages/dask/async.py", line 268, in execute_task result = execute_task(task, data) File "/Users/shoyer/conda/envs/xarray-dev/lib/python3.5/site-packages/dask/async.py", line 248, in _execute_task args2 = [_execute_task(a, cache) for a in args] File "/Users/shoyer/conda/envs/xarray-dev/lib/python3.5/site-packages/dask/async.py", line 248, in <listcomp> args2 = [_execute_task(a, cache) for a in args] File "/Users/shoyer/conda/envs/xarray-dev/lib/python3.5/site-packages/dask/async.py", line 245, in _execute_task return [_execute_task(a, cache) for a in arg] File "/Users/shoyer/conda/envs/xarray-dev/lib/python3.5/site-packages/dask/async.py", line 245, in <listcomp> return [_execute_task(a, cache) for a in arg] File "/Users/shoyer/conda/envs/xarray-dev/lib/python3.5/site-packages/dask/async.py", line 249, in _execute_task return func(*args2) File "/Users/shoyer/conda/envs/xarray-dev/lib/python3.5/site-packages/dask/array/core.py", line 51, in getarray c = np.asarray(c) File "/Users/shoyer/conda/envs/xarray-dev/lib/python3.5/site-packages/numpy/core/numeric.py", line 482, in asarray return array(a, dtype, copy=False, order=order) File "/Users/shoyer/dev/xarray/xarray/core/indexing.py", line 417, in __array__ return np.asarray(self.array, dtype=dtype) File "/Users/shoyer/conda/envs/xarray-dev/lib/python3.5/site-packages/numpy/core/numeric.py", line 482, in asarray return array(a, dtype, copy=False, order=order) File "/Users/shoyer/dev/xarray/xarray/core/indexing.py", line 392, in __array__ return np.asarray(array[self.key], dtype=None) File "/Users/shoyer/conda/envs/xarray-dev/lib/python3.5/site-packages/numpy/core/numeric.py", line 482, in asarray return array(a, dtype, copy=False, order=order) File "/Users/shoyer/dev/xarray/xarray/core/indexing.py", line 392, in __array__ return np.asarray(array[self.key], dtype=None) File "/Users/shoyer/dev/xarray/xarray/backends/netCDF4.py", line 56, in getitem data = getitem(self.array, key) File "netCDF4/_netCDF4.pyx", line 3695, in netCDF4._netCDF4.Variable.getitem (netCDF4/_netCDF4.c:37914) File "netCDF4/_netCDF4.pyx", line 4376, in netCDF4._netCDF4.Variable._get (netCDF4/_netCDF4.c:47134) ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
189817033 |