home / github / issue_comments

Menu
  • Search all tables
  • GraphQL API

issue_comments: 250615133

This data as json

html_url issue_url id node_id user created_at updated_at author_association body reactions performed_via_github_app issue
https://github.com/pydata/xarray/issues/1020#issuecomment-250615133 https://api.github.com/repos/pydata/xarray/issues/1020 250615133 MDEyOklzc3VlQ29tbWVudDI1MDYxNTEzMw== 1217238 2016-09-29T22:53:39Z 2016-09-29T22:53:39Z MEMBER

Looking at your dataset:

```

url ='http://nomads.ncep.noaa.gov:9090/dods/hrrr/hrrr20160801/hrrr_sfc_00z'

ds= xarray.open_dataset(url) /Users/shoyer/dev/xarray/xarray/conventions.py:386: RuntimeWarning: Unable to decode time axis into full numpy.datetime64 objects, continuing using dummy netCDF4.datetime objects instead, reason: dates out of range result = decode_cf_datetime(example_value, units, calendar)

ds <xarray.Dataset> Dimensions: (lat: 1155, lev: 5, lon: 2503, time: 19) Coordinates: * time (time) object 2016-09-28T12:00:00 2016-09-28T13:00:00 ... * lev (lev) float64 1e+03 925.0 850.0 700.0 500.0 * lat (lat) float64 21.14 21.17 21.2 21.22 21.25 21.28 21.3 ... * lon (lon) float64 -134.1 -134.1 -134.0 -134.0 -134.0 ... Data variables: dptprs (time, lev, lat, lon) float64 ... no4lftx180_0mb (time, lat, lon) float64 ... apcpsfc (time, lat, lon) float64 ... asnowsfc (time, lat, lon) float64 ... bgrunsfc (time, lat, lon) float64 ... capesfc (time, lat, lon) float64 ... cape180_0mb (time, lat, lon) float64 ... cape90_0mb (time, lat, lon) float64 ... cape255_0mb (time, lat, lon) float64 ... cfrzrsfc (time, lat, lon) float64 ... cicepsfc (time, lat, lon) float64 ... cinsfc (time, lat, lon) float64 ... cin180_0mb (time, lat, lon) float64 ... cin90_0mb (time, lat, lon) float64 ... cin255_0mb (time, lat, lon) float64 ... cnwatsfc (time, lat, lon) float64 ... cpofpsfc (time, lat, lon) float64 ... crainsfc (time, lat, lon) float64 ... csnowsfc (time, lat, lon) float64 ... dlwrfsfc (time, lat, lon) float64 ... dpt2m (time, lat, lon) float64 ... dswrfsfc (time, lat, lon) float64 ... dzdtsg500_800 (time, lat, lon) float64 ... fricvsfc (time, lat, lon) float64 ... frozrsfc (time, lat, lon) float64 ... gfluxsfc (time, lat, lon) float64 ... gustsfc (time, lat, lon) float64 ... hcdchcll (time, lat, lon) float64 ... hgtsfc (time, lat, lon) float64 ... hgt500mb (time, lat, lon) float64 ... hgt700mb (time, lat, lon) float64 ... hgt850mb (time, lat, lon) float64 ... hgt1000mb (time, lat, lon) float64 ... hgtclb (time, lat, lon) float64 ... hgt263_k (time, lat, lon) float64 ... hgt253_k (time, lat, lon) float64 ... hgttop0c (time, lat, lon) float64 ... hgtceil (time, lat, lon) float64 ... hgteql (time, lat, lon) float64 ... hgtclt (time, lat, lon) float64 ... hgt0c (time, lat, lon) float64 ... hgtl5 (time, lat, lon) float64 ... hlcy3000_0m (time, lat, lon) float64 ... hlcy1000_0m (time, lat, lon) float64 ... hpblsfc (time, lat, lon) float64 ... icecsfc (time, lat, lon) float64 ... landsfc (time, lat, lon) float64 ... lcdclcll (time, lat, lon) float64 ... lftxl100_100 (time, lat, lon) float64 ... lhtflsfc (time, lat, lon) float64 ... ltngclm (time, lat, lon) float64 ... maxdvv400_1000mb (time, lat, lon) float64 ... maxref1000m (time, lat, lon) float64 ... maxuvv400_1000mb (time, lat, lon) float64 ... mcdcmcll (time, lat, lon) float64 ... mslmamsl (time, lat, lon) float64 ... mstav0cm (time, lat, lon) float64 ... mxuphl5000_2000m (time, lat, lon) float64 ... plpl255_0mb (time, lat, lon) float64 ... pot2m (time, lat, lon) float64 ... pratesfc (time, lat, lon) float64 ... pressfc (time, lat, lon) float64 ... presclb (time, lat, lon) float64 ... prestop0c (time, lat, lon) float64 ... presclt (time, lat, lon) float64 ... pres0c (time, lat, lon) float64 ... pwatclm (time, lat, lon) float64 ... refcclm (time, lat, lon) float64 ... refd1000m (time, lat, lon) float64 ... refd4000m (time, lat, lon) float64 ... refd263_k (time, lat, lon) float64 ... retopclt (time, lat, lon) float64 ... rh2m (time, lat, lon) float64 ... rhtop0c (time, lat, lon) float64 ... rh0c (time, lat, lon) float64 ... rhpwclm (time, lat, lon) float64 ... sbt113toa (time, lat, lon) float64 ... sbt114toa (time, lat, lon) float64 ... sbt123toa (time, lat, lon) float64 ... sbt124toa (time, lat, lon) float64 ... sfcrsfc (time, lat, lon) float64 ... shtflsfc (time, lat, lon) float64 ... snodsfc (time, lat, lon) float64 ... snowcsfc (time, lat, lon) float64 ... spfh2m (time, lat, lon) float64 ... ssrunsfc (time, lat, lon) float64 ... tcdcclm (time, lat, lon) float64 ... tcolgclm (time, lat, lon) float64 ... tmpsfc (time, lat, lon) float64 ... tmpprs (time, lev, lat, lon) float64 ... tmp2m (time, lat, lon) float64 ... ugrdprs (time, lev, lat, lon) float64 ... ugrd80m (time, lat, lon) float64 ... ugrd10m (time, lat, lon) float64 ... ulwrfsfc (time, lat, lon) float64 ... ulwrftoa (time, lat, lon) float64 ... ustm0_6000m (time, lat, lon) float64 ... uswrfsfc (time, lat, lon) float64 ... vbdsfsfc (time, lat, lon) float64 ... vddsfsfc (time, lat, lon) float64 ... vgrdprs (time, lev, lat, lon) float64 ... vgrd80m (time, lat, lon) float64 ... vgrd10m (time, lat, lon) float64 ... vgtypsfc (time, lat, lon) float64 ... vilclm (time, lat, lon) float64 ... vissfc (time, lat, lon) float64 ... vstm0_6000m (time, lat, lon) float64 ... vucsh0_1000m (time, lat, lon) float64 ... vucsh0_6000m (time, lat, lon) float64 ... vvcsh0_1000m (time, lat, lon) float64 ... vvcsh0_6000m (time, lat, lon) float64 ... weasdaccsfc (time, lat, lon) float64 ... weasdsfc (time, lat, lon) float64 ... wind10m (time, lat, lon) float64 ... Attributes: title: High Resolution Rapid Refresh 3km 2D Surface forecast from 12Z28sep2016, downloaded Sep 28 13:19 UTC Conventions: COARDS GrADS dataType: Grid history: Thu Sep 29 17:52:17 UTC 2016 : imported by GrADS Data Server 2.0

ds.nbytes / 1e9 57.125497856 ```

So it's at least 57 GB when decoded as float64. This is probably more RAM than you have on your machine.

But also, when xarray writes a dataframe every variable first gets expanded to use all dimensions. So this is something like 5 * 57 GB in memory, and pandas probably needs a memory copy to create the DataFrame, so this probably needs at least 500 GB.

You'll have better luck subsetting the dataset first.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  180080354
Powered by Datasette · Queries took 0.781ms · About: xarray-datasette