home / github / issue_comments

Menu
  • Search all tables
  • GraphQL API

issue_comments: 249498700

This data as json

html_url issue_url id node_id user created_at updated_at author_association body reactions performed_via_github_app issue
https://github.com/pydata/xarray/pull/1017#issuecomment-249498700 https://api.github.com/repos/pydata/xarray/issues/1017 249498700 MDEyOklzc3VlQ29tbWVudDI0OTQ5ODcwMA== 832092 2016-09-26T07:31:25Z 2016-09-26T07:31:25Z NONE

FWIW, I solved this issue in a slightly different way in my own labelled array project (https://github.com/liam2/larray) (that I still hope to one day merge with xarray -- I will probably need to rewrite my project on top of xarray because the ship as sailed concerning the user-facing API): by default, you get "wildcard" axes, which only have a size and no labels (they do get a range() labels on demand, so you can .sel on that dimension -- to speak in xarray vocabulary). Those wildcard labels are not as picky as normal labels: a wildcard axis compares equal/aligns to other axes as long as it has the same length. In practice, I guess it will be very similar to not having an index at all (and it is probably cleaner this way, but I didn't think of that at the time). All of this to say that yes, this PR is definitely a good idea and would make xarray useful in more situations, as I have hit a lot of cases where real range() labels like you have now made things a lot more painful than necessary.

The only advantage I can think of now (except it was easier for me to implement it this way) of having a "wildcard axis" instead of no index/labels at all is that a subset could keep the information about which "tick" it comes from (again without blocking alignment). Not sure it's worth it though (I have actually not implemented it this way yet, but I was contemplating doing so).

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  179052741
Powered by Datasette · Queries took 76.237ms · About: xarray-datasette