issue_comments: 1484583468
This data as json
| html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| https://github.com/pydata/xarray/issues/7680#issuecomment-1484583468 | https://api.github.com/repos/pydata/xarray/issues/7680 | 1484583468 | IC_kwDOAMm_X85YfPIs | 5821660 | 2023-03-27T06:36:46Z | 2023-03-27T06:50:55Z | MEMBER | First, I totally agree with @jhamman having For the particular use case, netcdf-c/netCDF4-python create HDF5 files (
@abunimeh As a workaround until this is sorted out you could create the file (or subgroup) using ```python import xarray as xr import h5netcdf from time import sleep ds = xr.Dataset(data_vars=dict(hello=(["x"], [1., 1., 1., 1., 1.]))) track_order = False group = "/track" with h5netcdf.File("sample1.nc", "a", track_order=track_order) as f1: if group.split("/")[-1]: f1.create_group(group) ds.to_netcdf("sample1.nc", mode="a", engine="h5netcdf", group=group) with h5netcdf.File("sample2.nc", "a", track_order=track_order) as f2: if group.split("/")[-1]: f2.create_group(group) ds.to_netcdf("sample2.nc", mode="a", engine="h5netcdf", group=group) Update: Use |
{
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
1641109066 |