issue_comments: 1446096001
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/pydata/xarray/issues/4061#issuecomment-1446096001 | https://api.github.com/repos/pydata/xarray/issues/4061 | 1446096001 | IC_kwDOAMm_X85WMayB | 60435591 | 2023-02-27T10:43:51Z | 2023-02-27T11:16:59Z | CONTRIBUTOR | As suggested by https://github.com/pydata/xarray/pull/7553#discussion_r1117264787, pass ``` import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors import xarray example from https://matplotlib.org/3.1.1/tutorials/colors/colormapnorms.htmlfor colormap normalisationN = 100 X, Y = np.mgrid[-3:3:complex(0, N), -2:2:complex(0, N)] Z1 = np.exp(-X2 - Y2) Z2 = np.exp(-(X - 1)2 - (Y - 1)2) Z = (Z1 - Z2) * 2 fig, ax = plt.subplots(2, 1, figsize=(8, 8)) ax = ax.flatten() bounds = np.linspace(-1, 1, 10) norm = colors.BoundaryNorm(boundaries=bounds, ncolors=256) ax[0].pcolormesh(X, Y, Z, norm=norm, cmap='RdBu_r') now add data into dataset and plot it using same normalisationdata = xarray.DataArray(Z, dims=('x', 'y'), coords={'x': X[:,0], 'y': Y[0,:]}) data.plot(ax=ax[1], x='x', y='y', levels=bounds, add_colorbar=False) ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
618141254 |