home / github / issue_comments

Menu
  • Search all tables
  • GraphQL API

issue_comments: 1441513675

This data as json

html_url issue_url id node_id user created_at updated_at author_association body reactions performed_via_github_app issue
https://github.com/pydata/xarray/issues/7388#issuecomment-1441513675 https://api.github.com/repos/pydata/xarray/issues/7388 1441513675 IC_kwDOAMm_X85V68DL 6883049 2023-02-23T10:23:21Z 2023-02-23T10:23:21Z CONTRIBUTOR

With the PR the test above works, and also bzip2. I can't get it to apply blosc filters for some reason, it works but it does not really apply them. This is the full snippet I am using:

``` import xarray as xr import numpy as np

shape = (10, 20) chunksizes = (1, 10)

encoding = { 'compression': 'bzip2', 'shuffle': True, 'complevel': 8, 'fletcher32': False, 'contiguous': False, 'chunksizes': chunksizes }

da = xr.DataArray( data=np.random.rand(*shape), dims=['y', 'x'], name="foo", attrs={"bar": "baz"} ) da.encoding = encoding ds = da.to_dataset()

fname = "test.nc" ds.to_netcdf(fname, engine="netcdf4", mode="w")

with xr.open_dataset(fname, engine="netcdf4") as ds1: print(ds1.foo.encoding) ```

Also, I was not able to make the conda environment in ci/environment.yml to resolve libnetcdf 4.9.1. I had to build an environment on my own. I also added the hdf5 filters

name: xarray-tests channels: - conda-forge dependencies: - _libgcc_mutex=0.1=conda_forge - _openmp_mutex=4.5=2_gnu - blosc=1.21.3=hafa529b_0 - blosc-hdf5-plugin=1.0.0=h8b9aba8_4 - bzip2=1.0.8=h7f98852_4 - c-ares=1.18.1=h7f98852_0 - ca-certificates=2022.12.7=ha878542_0 - cached-property=1.5.2=hd8ed1ab_1 - cached_property=1.5.2=pyha770c72_1 - cftime=1.6.2=py311h4c7f6c3_1 - curl=7.88.1=hdc1c0ab_0 - h5py=3.8.0=nompi_py311h1db17ec_100 - hdf4=4.2.15=h9772cbc_5 - hdf5=1.12.2=nompi_h4df4325_101 - hdf5-external-filter-plugins=0.1.0=ha770c72_9 - hdf5-external-filter-plugins-bitshuffle=0.1.0=h6ca952b_9 - hdf5-external-filter-plugins-bzip2=0.1.0=hd13e76c_9 - hdf5-external-filter-plugins-lz4=0.1.0=h6ca952b_9 - hdf5plugin=4.1.1=py311hc7375e3_0 - icu=70.1=h27087fc_0 - jpeg=9e=h0b41bf4_3 - keyutils=1.6.1=h166bdaf_0 - krb5=1.20.1=h81ceb04_0 - ld_impl_linux-64=2.40=h41732ed_0 - libaec=1.0.6=hcb278e6_1 - libblas=3.9.0=16_linux64_openblas - libcblas=3.9.0=16_linux64_openblas - libcurl=7.88.1=hdc1c0ab_0 - libedit=3.1.20191231=he28a2e2_2 - libev=4.33=h516909a_1 - libffi=3.4.2=h7f98852_5 - libgcc-ng=12.2.0=h65d4601_19 - libgfortran-ng=12.2.0=h69a702a_19 - libgfortran5=12.2.0=h337968e_19 - libgomp=12.2.0=h65d4601_19 - libiconv=1.17=h166bdaf_0 - liblapack=3.9.0=16_linux64_openblas - libnetcdf=4.9.1=nompi_h34a3ff0_100 - libnghttp2=1.51.0=hff17c54_0 - libnsl=2.0.0=h7f98852_0 - libopenblas=0.3.21=pthreads_h78a6416_3 - libsqlite=3.40.0=h753d276_0 - libssh2=1.10.0=hf14f497_3 - libstdcxx-ng=12.2.0=h46fd767_19 - libuuid=2.32.1=h7f98852_1000 - libxml2=2.10.3=h7463322_0 - libzip=1.9.2=hc929e4a_1 - libzlib=1.2.13=h166bdaf_4 - lz4-c=1.9.4=hcb278e6_0 - ncurses=6.3=h27087fc_1 - netcdf4=1.6.2=nompi_py311ha396515_101 - numpy=1.24.2=py311h8e6699e_0 - openssl=3.0.8=h0b41bf4_0 - pip=23.0.1=pyhd8ed1ab_0 - python=3.11.0=he550d4f_1_cpython - python_abi=3.11=3_cp311 - readline=8.1.2=h0f457ee_0 - setuptools=67.4.0=pyhd8ed1ab_0 - snappy=1.1.9=hbd366e4_2 - tk=8.6.12=h27826a3_0 - tzdata=2022g=h191b570_0 - wheel=0.38.4=pyhd8ed1ab_0 - xz=5.2.6=h166bdaf_0 - zlib=1.2.13=h166bdaf_4 - zstd=1.5.2=h3eb15da_6 - pip: - packaging==23.0 - pandas==1.5.3 - python-dateutil==2.8.2 - pytz==2022.7.1 - six==1.16.0 - xarray==0.1.dev4485+gf8a0014

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  1503046820
Powered by Datasette · Queries took 0.614ms · About: xarray-datasette