home / github / issue_comments

Menu
  • Search all tables
  • GraphQL API

issue_comments: 1438244290

This data as json

html_url issue_url id node_id user created_at updated_at author_association body reactions performed_via_github_app issue
https://github.com/pydata/xarray/issues/7039#issuecomment-1438244290 https://api.github.com/repos/pydata/xarray/issues/7039 1438244290 IC_kwDOAMm_X85Vud3C 60435591 2023-02-21T10:36:48Z 2023-02-21T10:50:20Z CONTRIBUTOR

I have been thinking about a desireable solution, but I have a bit of trouble with it. Besides removing dtype from encoding (resulting in floats being written), one could also change the scale_factor to a higher value (e.g. 0.5). Writing this to int does take half the disksize than releasing the int restriction and writing it to float32. Whatever you do, the data is altered at least slightly.

Apparently, the data cannot be properly written to integers after reading it. This is a bit odd I would say, would that mean that the scaling+offset of ERA5 data is that thightly chosen that when applying it to another dataset/month, the data would fall out of the integer reach? Would be great if this would "just work". At the moment, apparently reading and writing ERA5 data with xarray results in incorrect netcdf files. I expected xarray would work off the shelf with these type of data, it feels like xarray is designed for doing exactly these type of things.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  1373352524
Powered by Datasette · Queries took 0.725ms · About: xarray-datasette