issue_comments: 1324489293
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/pydata/xarray/issues/7045#issuecomment-1324489293 | https://api.github.com/repos/pydata/xarray/issues/7045 | 1324489293 | IC_kwDOAMm_X85O8hpN | 23484003 | 2022-11-23T03:05:50Z | 2022-11-23T03:06:57Z | NONE |
My take: the main confusion is from trying to support a relational-database-like data model (where inner/outer joins make sense because values are discrete/categorical) AND a multi-dimensional array model for physical sciences (where typically values are floating-point, exact alignment is required, and interpolation is used when alignment is inexact). As a physical sciences guy, I basically never use the database-like behavior, and it only serves to silence alignment errors so that the fallout happens downstream (NaNs from outer joins, empty arrays on inner joins), making it harder to debug. TIL I can just
What happens if I have Cartesian
From my perspective, the dimensions are special coordinates that the arrays happen to be sampled in a rectangular grid on. It's not confusing to me, but maybe that's b/c of my perspective from physical sciences background/usecases. I suppose one could in principle have an array with coordinates such that none of the coordinates aligned with any particular axis, but it seems improbable.
IMO this is asking for weird bugs. In my work I either expect exact alignment, or I want to interpolate. I never want to ignore a mismatch because it's basically just sweeping an error under the rug. In fact, I'd really just like to test that all the dimension coordinates are the same objects, although Python's semantics don't really work with that.
Getting this right would be really powerful. |
{ "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
1376109308 |