issue_comments: 1291948502
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/pydata/xarray/pull/7221#issuecomment-1291948502 | https://api.github.com/repos/pydata/xarray/issues/7221 | 1291948502 | IC_kwDOAMm_X85NAZHW | 90008 | 2022-10-26T12:19:49Z | 2022-10-26T12:23:46Z | CONTRIBUTOR | I know it is not comparable, but I was really curious what "dictionary insertion" costs, in order to be able to understand if my comparisons were fair: code```python from tqdm import tqdm import xarray as xr from time import perf_counter import numpy as np N = 1000 # Everybody is lazy loading now, so lets force modules to get instantiated dummy_dataset = xr.Dataset() dummy_dataset['a'] = 1 dummy_dataset['b'] = 1 del dummy_dataset time_elapsed = np.zeros(N) # dataset = xr.Dataset() dataset = {} for i in tqdm(range(N)): # for i in range(N): time_start = perf_counter() dataset[f"var{i}"] = i time_end = perf_counter() time_elapsed[i] = time_end - time_start # %% from matplotlib import pyplot as plt plt.plot(np.arange(N), time_elapsed * 1E6, label='Time to add one variable') plt.xlabel("Number of existing variables") plt.ylabel("Time to add a variables (us)") plt.ylim([0, 10]) plt.title("Dictionary insertion") plt.grid(True) ```I think xarray gives me 3 order of magnitude of "thinking" benefit, so I'll take it!
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
1423312198 |