issue_comments: 1210383450
This data as json
| html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| https://github.com/pydata/xarray/issues/6904#issuecomment-1210383450 | https://api.github.com/repos/pydata/xarray/issues/6904 | 1210383450 | IC_kwDOAMm_X85IJPxa | 12760310 | 2022-08-10T09:07:00Z | 2022-08-10T09:07:00Z | NONE | This is a minimal working example that I could come up with. You can try to open any netcdf that you have. I tested on a small one and it didn't reproduce the error, so it is definitely only happening with large datasets when the arrays are not loaded into memory. Unfortunately, as you need a large file, I cannot really attach it here. ```python import xarray as xr from tqdm.contrib.concurrent import process_map import pprint def main(): global ds ds = xr.open_dataset('input.nc') it = range(0, 5) results = [] for i in it: results.append(compute(i)) print("------------Serial results-----------------") pprint.pprint(results) results = process_map(compute, it, max_workers=6, chunksize=1, disable=True) print("------------Parallel results-----------------") pprint.pprint(results) def compute(station): ds_point = ds.isel(lat=0, lon=0) return station, ds_point.t_2m_max.mean().item(), ds_point.t_2m_min.mean().item(), ds_point.lon.min().item(), ds_point.lat.min().item() if name == "main": main() ``` |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
1333650265 |