issue_comments: 1176959116
This data as json
| html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| https://github.com/pydata/xarray/issues/6749#issuecomment-1176959116 | https://api.github.com/repos/pydata/xarray/issues/6749 | 1176959116 | IC_kwDOAMm_X85GJviM | 2448579 | 2022-07-07T02:05:06Z | 2022-07-07T02:05:06Z | MEMBER | We discussed:
1. dropping variables without the dimension
2. Return ds.sizes["x"] by broadcasting For the other reductions ``` python import numpy as np import xarray as xr from xarray.core.duck_array_ops import count ds = xr.Dataset({"a": ("x", [1, 2, 3]), "b": ("y", [4, 5])}) for func in [np.nansum, np.nanprod, np.nanmean, np.nanvar, np.nanstd, count]: print(f"{func.name!s}({ds.b.data}, axis=()) = {func(ds.b.data, axis=())}") ``` gives
I guess the output for nansum, nanprod doesn't match what you would get by broadcasting along the absent dimension. |
{
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
1292284929 |