issue_comments: 1176441916
This data as json
| html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| https://github.com/pydata/xarray/issues/6758#issuecomment-1176441916 | https://api.github.com/repos/pydata/xarray/issues/6758 | 1176441916 | IC_kwDOAMm_X85GHxQ8 | 2448579 | 2022-07-06T16:40:47Z | 2022-07-06T16:40:47Z | MEMBER | On xarray main with flox installed: ``` python import numpy as np import xarray as xr display(xr.version) N = 3728 ds = xr.Dataset() ds["latitude"] = ("x", 0 + 20 * np.random.standard_normal(N)) ds["data"] = ("x", 0 + 100 * np.random.standard_normal(N)) %timeit ds.groupby_bins("latitude", np.arange(-40, 40, 0.1)).sum() ``` 50.3 ms ± 203 µs per loop (mean ± std. dev. of 7 runs, 10 loops each) You could try it on our pre-release (https://docs.xarray.dev/en/latest/whats-new.html#v2022-06-0rc0-9-june-2022) or use xhistogram which should be faster even. |
{
"total_count": 1,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 1,
"rocket": 0,
"eyes": 0
} |
1295939038 |