issue_comments: 1126083413
This data as json
| html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| https://github.com/pydata/xarray/issues/659#issuecomment-1126083413 | https://api.github.com/repos/pydata/xarray/issues/659 | 1126083413 | IC_kwDOAMm_X85DHqtV | 13301940 | 2022-05-13T13:55:20Z | 2022-05-13T13:55:20Z | MEMBER | 5734 has greatly improved the performance. Fantastic work @dcherian 👏🏽```python In [13]: import xarray as xr, pandas as pd, numpy as np In [14]: ds = xr.Dataset({"a": xr.DataArray(np.r_[np.arange(500.), np.arange(500.)]), ...: "b": xr.DataArray(np.arange(1000.))}) In [15]: ds Out[15]: <xarray.Dataset> Dimensions: (dim_0: 1000) Dimensions without coordinates: dim_0 Data variables: a (dim_0) float64 0.0 1.0 2.0 3.0 4.0 ... 496.0 497.0 498.0 499.0 b (dim_0) float64 0.0 1.0 2.0 3.0 4.0 ... 996.0 997.0 998.0 999.0 ``` ```python In [16]: xr.set_options(use_flox=True) Out[16]: <xarray.core.options.set_options at 0x104de21a0> In [17]: %%timeit ...: ds.groupby("a").mean() ...: ...: 1.5 ms ± 3.3 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each) In [18]: xr.set_options(use_flox=False) Out[18]: <xarray.core.options.set_options at 0x144382350> In [19]: %%timeit ...: ds.groupby("a").mean() ...: ...: 94 ms ± 715 µs per loop (mean ± std. dev. of 7 runs, 10 loops each) ``` |
{
"total_count": 4,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 4,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
117039129 |