home / github / issue_comments

Menu
  • Search all tables
  • GraphQL API

issue_comments: 1042656377

This data as json

html_url issue_url id node_id user created_at updated_at author_association body reactions performed_via_github_app issue
https://github.com/pydata/xarray/issues/4118#issuecomment-1042656377 https://api.github.com/repos/pydata/xarray/issues/4118 1042656377 IC_kwDOAMm_X84-Jax5 226037 2022-02-17T07:39:15Z 2022-02-17T08:17:51Z MEMBER

@TomNicholas (cc @mraspaud)

Do you have use cases which one of these designs could handle but the other couldn't?

The two main classes of on-disk formats that, I know of, which cannot be always represented in the "group is a Dataset" approach are: - in netCDF following the CF conventions for groups, it is legal for an array to refer to a dimension or a coordinate in a different group and so arrays in the same group may have dimensions with the same name, but different size / coordinate values, (this was the orginal motivation to explore the DataGroup approach) - the current spec for the Next-generation file formats (NGFF) for bio-imaging has all scales of the same 5D data in the same group. (cc @joshmoore)

I don't have an example at hand, but my impression is that satellite products that use HDF5 file format also place arrays with inconsistent dimensions / coordinates in the same group.

{
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  628719058
Powered by Datasette · Queries took 2.35ms · About: xarray-datasette