issue_comments: 1031773761
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/pydata/xarray/issues/6069#issuecomment-1031773761 | https://api.github.com/repos/pydata/xarray/issues/6069 | 1031773761 | IC_kwDOAMm_X849f55B | 43613877 | 2022-02-07T18:19:08Z | 2022-02-07T18:19:08Z | CONTRIBUTOR | Hi @Boorhin,
I just ran into the same issue. The
This leads however to another issue: ```python ValueError Traceback (most recent call last) <ipython-input-52-bb3d2c1adc12> in <module> 18 for var in varnames: 19 ds[var].isel(time=slice(t)).values += np.random.random((len(layers),len(nodesx))) ---> 20 ds.isel(time=slice(t)).to_zarr(outfile, region={"time": slice(t)}) ~/.local/lib/python3.8/site-packages/xarray/core/dataset.py in to_zarr(self, store, chunk_store, mode, synchronizer, group, encoding, compute, consolidated, append_dim, region, safe_chunks) 2029 encoding = {} 2030 -> 2031 return to_zarr( 2032 self, 2033 store=store, ~/.local/lib/python3.8/site-packages/xarray/backends/api.py in to_zarr(dataset, store, chunk_store, mode, synchronizer, group, encoding, compute, consolidated, append_dim, region, safe_chunks) 1359 1360 if region is not None: -> 1361 _validate_region(dataset, region) 1362 if append_dim is not None and append_dim in region: 1363 raise ValueError( ~/.local/lib/python3.8/site-packages/xarray/backends/api.py in _validate_region(ds, region)
1272 ]
1273 if non_matching_vars:
-> 1274 raise ValueError(
1275 f"when setting ValueError: when setting Here, the solution is however provided with the error message. Following the instructions, the snippet below finally works (as far as I can tell): ```python import xarray as xr from datetime import datetime,timedelta import numpy as np dt= datetime.now() times= np.arange(dt,dt+timedelta(days=6), timedelta(hours=1)) nodesx,nodesy,layers=np.arange(10,50), np.arange(10,50)+15, np.arange(10) ds=xr.Dataset() ds.coords['time']=('time', times) ds.coords['node_x']=('node', nodesx)ds.coords['node_y']=('node', nodesy)ds.coords['layer']=('layer', layers)outfile='my_zarr' varnames=['potato','banana', 'apple'] for var in varnames: ds[var]=(('time', 'layer', 'node'), np.zeros((len(times), len(layers),len(nodesx)))) ds.to_zarr(outfile, mode='a') for t in range(len(times)): for var in varnames: ds[var].isel(time=slice(t)).values += np.random.random((len(layers),len(nodesx))) ds.isel(time=slice(t)).to_zarr(outfile, region={"time": slice(t)}) ``` Maybe one would like to generalise Cheers |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
1077079208 |