html_url,issue_url,id,node_id,user,created_at,updated_at,author_association,body,reactions,performed_via_github_app,issue https://github.com/pydata/xarray/issues/4476#issuecomment-788753958,https://api.github.com/repos/pydata/xarray/issues/4476,788753958,MDEyOklzc3VlQ29tbWVudDc4ODc1Mzk1OA==,3332539,2021-03-02T09:16:10Z,2021-03-02T09:18:39Z,NONE,"@zxdawn I am pretty sure it was possible in v0.15.1. But I would need to check that again. edit: I just checked the old documentation from that version, and it confirms my memory: http://xarray.pydata.org/en/accessor-documentation/generated/xarray.core.groupby.DataArrayGroupBy.argmax.html ","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,712217045 https://github.com/pydata/xarray/issues/4476#issuecomment-722034130,https://api.github.com/repos/pydata/xarray/issues/4476,722034130,MDEyOklzc3VlQ29tbWVudDcyMjAzNDEzMA==,3332539,2020-11-04T23:42:38Z,2020-11-04T23:42:38Z,NONE,This was definitely possible in the last versions (at least in v.0.15.1). Can we make this available again?,"{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,712217045 https://github.com/pydata/xarray/issues/4240#issuecomment-676326130,https://api.github.com/repos/pydata/xarray/issues/4240,676326130,MDEyOklzc3VlQ29tbWVudDY3NjMyNjEzMA==,3332539,2020-08-19T13:07:05Z,2020-08-19T13:07:05Z,NONE,Would it be an option to consider the time stamp of the file's last change as a caching criterion?,"{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,662505658 https://github.com/pydata/xarray/issues/4137#issuecomment-642534445,https://api.github.com/repos/pydata/xarray/issues/4137,642534445,MDEyOklzc3VlQ29tbWVudDY0MjUzNDQ0NQ==,3332539,2020-06-11T09:38:06Z,2020-06-11T09:52:34Z,NONE,"Hey @kmuehlbauer, alles klar? :-) Ah, yes, there's even the hint on the bottom. Didn't see this. Thanks! I updated my previous comments.","{""total_count"": 2, ""+1"": 1, ""-1"": 0, ""laugh"": 1, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,636200235 https://github.com/pydata/xarray/issues/4137#issuecomment-642086321,https://api.github.com/repos/pydata/xarray/issues/4137,642086321,MDEyOklzc3VlQ29tbWVudDY0MjA4NjMyMQ==,3332539,2020-06-10T15:30:44Z,2020-06-11T09:51:48Z,NONE,"With pure matplotlib (avoiding the `xarray.plot` function) both versions show the data. However, calling `set_boundary` at the end would leave the data unrestricted. ```python import xarray as xr import matplotlib.pyplot as plt import matplotlib.path as mpath import cartopy.crs as ccrs import cartopy.feature as cfeature import numpy as np ds = xr.tutorial.load_dataset('air_temperature') ax = plt.subplot(projection=ccrs.NorthPolarStereo()) # ax.set_boundary(circle, transform=ax.transAxes) # works and ""cuts"" also the data as in the example above data = ds.air.isel(time=0) ax.pcolor(data.lon, data.lat, data, transform=ccrs.PlateCarree()) theta = np.linspace(0, 2*np.pi, 100) center, radius = [0.5, 0.5], 0.5 verts = np.vstack([np.sin(theta), np.cos(theta)]).T circle = mpath.Path(verts * radius + center) ax.coastlines() ax.gridlines() ax.set_extent([-180,180, 50,90], crs=ccrs.PlateCarree()) ax.set_boundary(circle, transform=ax.transAxes) # works for the axis border but not for the data ```

PS.: can I somehow append images of the plots?","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,636200235 https://github.com/pydata/xarray/issues/4137#issuecomment-642075928,https://api.github.com/repos/pydata/xarray/issues/4137,642075928,MDEyOklzc3VlQ29tbWVudDY0MjA3NTkyOA==,3332539,2020-06-10T15:14:11Z,2020-06-11T09:49:56Z,NONE,"Yes, sorry. I should've mentioned that. On a single plot this works, but only iff you apply the `set_boundary` command before the data plotting, i.e.: ```python import xarray as xr import matplotlib.pyplot as plt import matplotlib.path as mpath import cartopy.crs as ccrs import cartopy.feature as cfeature import numpy as np ds = xr.tutorial.load_dataset('air_temperature') ax = plt.subplot(projection=ccrs.NorthPolarStereo()) ax.set_boundary(circle, transform=ax.transAxes) # works data = ds.air.isel(time=0) p = data.plot(transform=ccrs.PlateCarree(), y=""lat"", x=""lon"", ax=ax ) theta = np.linspace(0, 2*np.pi, 100) center, radius = [0.5, 0.5], 0.5 verts = np.vstack([np.sin(theta), np.cos(theta)]).T circle = mpath.Path(verts * radius + center) ax.coastlines() ax.gridlines() ax.set_extent([-180,180, 50,90], crs=ccrs.PlateCarree()) # ax.set_boundary(circle, transform=ax.transAxes) # wouldn't work ```

","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,636200235