html_url,issue_url,id,node_id,user,created_at,updated_at,author_association,body,reactions,performed_via_github_app,issue
https://github.com/pydata/xarray/issues/4112#issuecomment-704530619,https://api.github.com/repos/pydata/xarray/issues/4112,704530619,MDEyOklzc3VlQ29tbWVudDcwNDUzMDYxOQ==,14314623,2020-10-06T20:20:34Z,2020-10-06T20:20:34Z,CONTRIBUTOR,"Just tried this with the newest dask version and can confirm that I do not get huge chunks anymore *IF* i specify `dask.config.set({""array.slicing.split_large_chunks"": True})`. I also needed to modify the example to exceed the internal chunk size limitation:
```python
import numpy as np
import xarray as xr
import dask
dask.config.set({""array.slicing.split_large_chunks"": True})
short_time = xr.cftime_range('2000', periods=12)
long_time = xr.cftime_range('2000', periods=120)
data_short = np.random.rand(len(short_time))
data_long = np.random.rand(len(long_time))
n=1000
a = xr.DataArray(data_short, dims=['time'], coords={'time':short_time}).expand_dims(a=n, b=n).chunk({'time':3})
b = xr.DataArray(data_long, dims=['time'], coords={'time':long_time}).expand_dims(a=n, b=n).chunk({'time':3})
a,b = xr.align(a,b, join = 'outer')
```
with the option turned on I get this for `a`;

with the defaults, I still get one giant chunk.

Ill try this soon in a real world scenario described above. Just wanted to report back here.
","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,627600168