html_url,issue_url,id,node_id,user,created_at,updated_at,author_association,body,reactions,performed_via_github_app,issue https://github.com/pydata/xarray/issues/4043#issuecomment-1065536538,https://api.github.com/repos/pydata/xarray/issues/4043,1065536538,IC_kwDOAMm_X84_gswa,8419421,2022-03-11T21:16:59Z,2022-03-11T21:16:59Z,NONE,"I believe I am experiencing a similar issue, although with code that I thought was smart enough to chunk the data request into smaller pieces: ``` import numpy as np import xarray as xr from dask.diagnostics import ProgressBar import intake wrf_url = ('https://rda.ucar.edu/thredds/catalog/files/g/ds612.0/' 'PGW3D/2006/catalog.xml') catalog_u = intake.open_thredds_merged(wrf_url, path=['*_U_2006060*']) catalog_v = intake.open_thredds_merged(wrf_url, path=['*_V_2006060*']) ds_u = catalog_u.to_dask() ds_u['U'] = ds_u.U.chunk(""auto"") ds_v = catalog_v.to_dask() ds_v['V'] = ds_v.V.chunk(""auto"") ds = xr.merge((ds_u, ds_v)) def unstagger(ds, var, coord, new_coord): var1 = ds[var].isel({coord: slice(None, -1)}) var2 = ds[var].isel({coord: slice(1, None)}) return ((var1 + var2) / 2).rename({coord: new_coord}) with ProgressBar(): ds['U_unstaggered'] = unstagger(ds, 'U', 'west_east_stag', 'west_east') ds['V_unstaggered'] = unstagger(ds, 'V', 'south_north_stag', 'south_north') ds['speed'] = np.hypot(ds.U_unstaggered, ds.V_unstaggered) ds.speed.isel(bottom_top=10).sel(Time='2006-06-07T18:00').plot() ``` This throws an error because, according to the RDA help folks, a request for an entire variable is made, which far exceeds their server's 500 MB request limit: ``` rda.ucar.edu/thredds/dodsC/files/g/ds612.0/PGW3D/2006/wrf3d_d01_PGW_U_20060607.nc.dods?U%5B0:1: 7%5D%5B0:1:49%5D%5B0:1:1014%5D%5B0:1:1359%5D ``` Here's the error: ``` Traceback (most recent call last): File ""/home/decker/classes/met325/rda_plot.py"", line 29, in ds.speed.isel(bottom_top=10).sel(Time='2006-06-07T18:00').plot() File ""/home/decker/local/miniconda3/envs/met325/lib/python3.10/site-packages/xarray/plot/plot.py"", line 862, in __call__ return plot(self._da, **kwargs) File ""/home/decker/local/miniconda3/envs/met325/lib/python3.10/site-packages/xarray/plot/plot.py"", line 293, in plot darray = darray.squeeze().compute() File ""/home/decker/local/miniconda3/envs/met325/lib/python3.10/site-packages/xarray/core/dataarray.py"", line 951, in compute return new.load(**kwargs) File ""/home/decker/local/miniconda3/envs/met325/lib/python3.10/site-packages/xarray/core/dataarray.py"", line 925, in load ds = self._to_temp_dataset().load(**kwargs) File ""/home/decker/local/miniconda3/envs/met325/lib/python3.10/site-packages/xarray/core/dataset.py"", line 862, in load evaluated_data = da.compute(*lazy_data.values(), **kwargs) File ""/home/decker/local/miniconda3/envs/met325/lib/python3.10/site-packages/dask/base.py"", line 571, in compute results = schedule(dsk, keys, **kwargs) File ""/home/decker/local/miniconda3/envs/met325/lib/python3.10/site-packages/dask/threaded.py"", line 79, in get results = get_async( File ""/home/decker/local/miniconda3/envs/met325/lib/python3.10/site-packages/dask/local.py"", line 507, in get_async raise_exception(exc, tb) File ""/home/decker/local/miniconda3/envs/met325/lib/python3.10/site-packages/dask/local.py"", line 315, in reraise raise exc File ""/home/decker/local/miniconda3/envs/met325/lib/python3.10/site-packages/dask/local.py"", line 220, in execute_task result = _execute_task(task, data) File ""/home/decker/local/miniconda3/envs/met325/lib/python3.10/site-packages/dask/core.py"", line 119, in _execute_task return func(*(_execute_task(a, cache) for a in args)) File ""/home/decker/local/miniconda3/envs/met325/lib/python3.10/site-packages/dask/array/core.py"", line 116, in getter c = np.asarray(c) File ""/home/decker/local/miniconda3/envs/met325/lib/python3.10/site-packages/xarray/core/indexing.py"", line 357, in __array__ return np.asarray(self.array, dtype=dtype) File ""/home/decker/local/miniconda3/envs/met325/lib/python3.10/site-packages/xarray/core/indexing.py"", line 521, in __array__ return np.asarray(self.array, dtype=dtype) File ""/home/decker/local/miniconda3/envs/met325/lib/python3.10/site-packages/xarray/core/indexing.py"", line 422, in __array__ return np.asarray(array[self.key], dtype=None) File ""/home/decker/local/miniconda3/envs/met325/lib/python3.10/site-packages/xarray/conventions.py"", line 62, in __getitem__ return np.asarray(self.array[key], dtype=self.dtype) File ""/home/decker/local/miniconda3/envs/met325/lib/python3.10/site-packages/xarray/core/indexing.py"", line 422, in __array__ return np.asarray(array[self.key], dtype=None) File ""/home/decker/local/miniconda3/envs/met325/lib/python3.10/site-packages/xarray/backends/pydap_.py"", line 39, in __getitem__ return indexing.explicit_indexing_adapter( File ""/home/decker/local/miniconda3/envs/met325/lib/python3.10/site-packages/xarray/core/indexing.py"", line 711, in explicit_indexing_adapter result = raw_indexing_method(raw_key.tuple) File ""/home/decker/local/miniconda3/envs/met325/lib/python3.10/site-packages/xarray/backends/pydap_.py"", line 47, in _getitem result = robust_getitem(array, key, catch=ValueError) File ""/home/decker/local/miniconda3/envs/met325/lib/python3.10/site-packages/xarray/backends/common.py"", line 64, in robust_getitem return array[key] File ""/home/decker/local/miniconda3/envs/met325/lib/python3.10/site-packages/pydap/model.py"", line 323, in __getitem__ out.data = self._get_data_index(index) File ""/home/decker/local/miniconda3/envs/met325/lib/python3.10/site-packages/pydap/model.py"", line 353, in _get_data_index return self._data[index] File ""/home/decker/local/miniconda3/envs/met325/lib/python3.10/site-packages/pydap/handlers/dap.py"", line 170, in __getitem__ raise_for_status(r) File ""/home/decker/local/miniconda3/envs/met325/lib/python3.10/site-packages/pydap/net.py"", line 38, in raise_for_status raise HTTPError( webob.exc.HTTPError: 403 403 ``` I thought smaller requests would automagically happen with this code. Is it intended that a large request be made?","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,614144170 https://github.com/pydata/xarray/issues/4043#issuecomment-657136785,https://api.github.com/repos/pydata/xarray/issues/4043,657136785,MDEyOklzc3VlQ29tbWVudDY1NzEzNjc4NQ==,221526,2020-07-11T22:01:55Z,2020-07-11T22:01:55Z,CONTRIBUTOR,Probably worth raising upstream with the THREDDS team. I do wonder if there's some issues with the chunking/compression of the native .nc files that's at play here.,"{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,614144170 https://github.com/pydata/xarray/issues/4043#issuecomment-628484954,https://api.github.com/repos/pydata/xarray/issues/4043,628484954,MDEyOklzc3VlQ29tbWVudDYyODQ4NDk1NA==,48764870,2020-05-14T08:37:43Z,2020-05-14T08:37:43Z,NONE,"We tried several times with 2000MB this configuration in the thredds: ``` 50 2000 opendap/3.7 ``` But when we request more than a chunk of time=500MB the error appears: RuntimeError: NetCDF: Access failure > You might want to experiment with smaller chunks. I tried with 50MB and the elapsed time was huge. Local Network - Elapsed time: 0.5819 minutes OpenDAP - Elapsed time: 37.1448 minutes ","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,614144170 https://github.com/pydata/xarray/issues/4043#issuecomment-628016841,https://api.github.com/repos/pydata/xarray/issues/4043,628016841,MDEyOklzc3VlQ29tbWVudDYyODAxNjg0MQ==,1197350,2020-05-13T14:13:06Z,2020-05-13T14:13:06Z,MEMBER,"> Using this chunk of time=500Mb the code runs properly but it is really slow compared with the response through local network. You might want to experiment with smaller chunks. In general, opendap will always introduce overhead compared to direct file access.","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,614144170 https://github.com/pydata/xarray/issues/4043#issuecomment-627882905,https://api.github.com/repos/pydata/xarray/issues/4043,627882905,MDEyOklzc3VlQ29tbWVudDYyNzg4MjkwNQ==,48764870,2020-05-13T10:01:08Z,2020-05-13T10:01:08Z,NONE,"I followed your recommendations @rabernat, please see my test code bellow. ```python import xarray as xr import os from datetime import datetime, timedelta import pandas as pd import shutil import numpy as np import time lonlat_box = [-4.5, -2.5, 44, 45] # ERA5 IHdata - Local # ------------------- ds = xr.open_mfdataset(['raw/Wind_ERA5_Global_1998.05.nc', 'raw/Wind_ERA5_Global_1998.06.nc']) ds = ds.get('u') # from 0º,360º to -180º,180º ds['lon'] = (ds.lon + 180) % 360 - 180 # lat is upside down --> sort ascending ds = ds.sortby(['lon', 'lat']) # Make the selection ds = ds.sel(lon=slice(lonlat_box[0], lonlat_box[1]), lat=slice(lonlat_box[2], lonlat_box[3])) print(ds) tic = time.perf_counter() df = ds.to_dataframe() toc = time.perf_counter() print(f""\nLocal Network - Elapsed time: {(toc - tic)/60:0.4f} minutes\n\n"") del ds, df # ERA5 IHdata - Opendap # --------------------- ds = xr.open_mfdataset(['http://193.144.213.180:8080/thredds/dodsC/Wind/Wind_ERA5/Global/Wind_ERA5_Global_1998.05.nc', 'http://193.144.213.180:8080/thredds/dodsC/Wind/Wind_ERA5/Global/Wind_ERA5_Global_1998.06.nc'], chunks={'time': '500MB'}) ds = ds.get('u') # from 0º,360º to -180º,180º ds['lon'] = (ds.lon + 180) % 360 - 180 # lat is upside down --> sort ascending ds = ds.sortby(['lon', 'lat']) # Make the selection ds = ds.sel(lon=slice(lonlat_box[0], lonlat_box[1]), lat=slice(lonlat_box[2], lonlat_box[3])) print(ds) tic = time.perf_counter() df = ds.to_dataframe() toc = time.perf_counter() print(f""\n OpenDAP - Elapsed time: {(toc - tic)/60:0.4f} minutes\n\n"") del ds, df ``` Result: ```ipython dask.array Coordinates: * lon (lon) float32 -4.5 -4.25 -4.0 -3.75 -3.5 -3.25 -3.0 -2.75 -2.5 * lat (lat) float32 44.0 44.25 44.5 44.75 45.0 * time (time) datetime64[ns] 1998-05-01 ... 1998-06-30T23:00:00 Attributes: units: m s**-1 long_name: 10 metre U wind component Local Network - Elapsed time: 0.4037 minutes dask.array Coordinates: * lon (lon) float32 -4.5 -4.25 -4.0 -3.75 -3.5 -3.25 -3.0 -2.75 -2.5 * lat (lat) float32 44.0 44.25 44.5 44.75 45.0 * time (time) datetime64[ns] 1998-05-01 ... 1998-06-30T23:00:00 Attributes: units: m s**-1 long_name: 10 metre U wind component OpenDAP - Elapsed time: 8.1971 minutes ``` Using this chunk of time=500Mb the code runs properly but it is really slow compared with the response through local network. I will try to raise this limit in the Opendap configuration with our IT-team to a more reasonable limit. ","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,614144170 https://github.com/pydata/xarray/issues/4043#issuecomment-627387025,https://api.github.com/repos/pydata/xarray/issues/4043,627387025,MDEyOklzc3VlQ29tbWVudDYyNzM4NzAyNQ==,1197350,2020-05-12T14:38:37Z,2020-05-12T14:38:37Z,MEMBER,"> Just for my understanding, So theoretically It is not possible to make big requests without using chunking? This depends entirely on the TDS server configuration. See comment in https://github.com/Unidata/netcdf-c/issues/1667#issuecomment-597372065. The default limit appears to be 500 MB. It's important to note that _none of this_ has to do with xarray. Xarray is simply the top layer of a very deep software stack. If the TDS server could deliver larger data requests, and the netCDF4-python library could accept them, xarray would have no problem.","{""total_count"": 1, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 1, ""rocket"": 0, ""eyes"": 0}",,614144170 https://github.com/pydata/xarray/issues/4043#issuecomment-627375551,https://api.github.com/repos/pydata/xarray/issues/4043,627375551,MDEyOklzc3VlQ29tbWVudDYyNzM3NTU1MQ==,48764870,2020-05-12T14:19:24Z,2020-05-12T14:19:24Z,NONE,"@rabernat - Thank you! I will review the code (thank you for the extra comments, I really appreciate that) and follow your instructions to test the chunk size. Just for my understanding, So theoretically It is not possible to make big requests without using chunking? The threads server is under our management and we want to know if these errors can be solved through any specific configuration of the service in the thredds. Thank you in advance!","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,614144170 https://github.com/pydata/xarray/issues/4043#issuecomment-627368616,https://api.github.com/repos/pydata/xarray/issues/4043,627368616,MDEyOklzc3VlQ29tbWVudDYyNzM2ODYxNg==,1197350,2020-05-12T14:07:39Z,2020-05-12T14:07:39Z,MEMBER,"I have spent plenty of time debugging these sorts of issues. It really helps to take xarray out of the equation. Try making your request with just the netCDF--that's all that xarray uses under the hood. Overall your example is very complicated, which makes it hard to find the core issue. You generally want to try something like this ```python import netCDF4 ncds = netCDF4.Dataset(OPENDAP_url) data = ncds[variable_name][:] ``` Try playing around with the slice `[:]` to see under what circumstances the opendap server fails. Then use chunking in xarray to limit the size of each individual request. That's what's described in pangeo-data/pangeo#767. A few additional comments about your code: ```python # Select spatial subset [lon,lat] ds = ds.where((ds.lon >= Lon[0] - dl) & (ds.lon <= Lon[1] + dl) & (ds.lat >= Lat[0] - dl) & (ds.lat <= Lat[1] + dl), drop=True) ``` This is **NOT** how you do subsetting with xarray. Where is meant for masking. I recommend reviewing the xarray docs on [indexing and selecting](http://xarray.pydata.org/en/stable/indexing.html). Your call should be something like ```python ds = ds.sel(lon=slice(...), lat=slice(...)) ``` What's the difference? `where` downloads all of the data from the opendap server and then fills it with NaNs outside of your selection, while `sel` lazily limits the size of the request from the opendap server. This could make a big difference in terms of the server's memory usage. ```python ds = ds.sortby('lon', 'lat') ``` Can you do this sorting *after* loading the data. It's an expensive operation and might not interact well with the opendap server.","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,614144170 https://github.com/pydata/xarray/issues/4043#issuecomment-627363191,https://api.github.com/repos/pydata/xarray/issues/4043,627363191,MDEyOklzc3VlQ29tbWVudDYyNzM2MzE5MQ==,48764870,2020-05-12T13:58:26Z,2020-05-12T13:58:26Z,NONE,"thank you @dcherian, We know that if the request is small it works fine, but we want to make big requests of data. Is any limitation using opendap?","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,614144170 https://github.com/pydata/xarray/issues/4043#issuecomment-627357616,https://api.github.com/repos/pydata/xarray/issues/4043,627357616,MDEyOklzc3VlQ29tbWVudDYyNzM1NzYxNg==,2448579,2020-05-12T13:48:49Z,2020-05-12T13:48:49Z,MEMBER,I would check your server logs if you can. Or avoid xarray and try with lower level pydap / netCDF4. This may be useful: https://github.com/pangeo-data/pangeo/issues/767. Maybe you're requesting too much data?,"{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,614144170 https://github.com/pydata/xarray/issues/4043#issuecomment-627346640,https://api.github.com/repos/pydata/xarray/issues/4043,627346640,MDEyOklzc3VlQ29tbWVudDYyNzM0NjY0MA==,48764870,2020-05-12T13:30:39Z,2020-05-12T13:30:39Z,NONE,"Thank you @ocefpaf! But it raised the same error. I also try to load ""u"" variable with matlab ncread through opendap and also failed! So maybe is not a problem related with python...? I am very confused! ```Loading files: http://193.144.213.180:8080/thredds/dodsC/Wind/Wind_ERA5/Global/Wind_ERA5_Global_1998.05.nc http://193.144.213.180:8080/thredds/dodsC/Wind/Wind_ERA5/Global/Wind_ERA5_Global_1998.06.nc --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) d:\2020_REPSOL\Codigos_input_TESEO\user_script.py in 58 # ) 59 ---> 60 ERA5_windIHData2txt_TESEO(lonlat_box=[-4.5, -2.5, 44, 45], 61 date_ini=datetime(1998, 5, 28, 0), 62 date_end=datetime(1998, 6, 1, 12), d:\2020_REPSOL\Codigos_input_TESEO\TESEOtools_v0.py in ERA5_windIHData2txt_TESEO(***failed resolving arguments***) 826 827 # From xarray to dataframe --> 828 df = ds.to_dataframe().reset_index() 829 del ds 830 print('[Processing currents 2D...]') ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\xarray\core\dataset.py in to_dataframe(self) 4503 this dataset's indices. 4504 """""" -> 4505 return self._to_dataframe(self.dims) 4506 4507 def _set_sparse_data_from_dataframe( ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\xarray\core\dataset.py in _to_dataframe(self, ordered_dims) 4489 def _to_dataframe(self, ordered_dims): 4490 columns = [k for k in self.variables if k not in self.dims] -> 4491 data = [ 4492 self._variables[k].set_dims(ordered_dims).values.reshape(-1) 4493 for k in columns ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\xarray\core\dataset.py in (.0) 4490 columns = [k for k in self.variables if k not in self.dims] 4491 data = [ -> 4492 self._variables[k].set_dims(ordered_dims).values.reshape(-1) 4493 for k in columns 4494 ] ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\xarray\core\variable.py in values(self) 444 def values(self): 445 """"""The variable's data as a numpy.ndarray"""""" --> 446 return _as_array_or_item(self._data) 447 448 @values.setter ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\xarray\core\variable.py in _as_array_or_item(data) 247 TODO: remove this (replace with np.asarray) once these issues are fixed 248 """""" --> 249 data = np.asarray(data) 250 if data.ndim == 0: 251 if data.dtype.kind == ""M"": ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\numpy\core\_asarray.py in asarray(a, dtype, order) 83 84 """""" ---> 85 return array(a, dtype, copy=False, order=order) 86 87 ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\dask\array\core.py in __array__(self, dtype, **kwargs) 1334 1335 def __array__(self, dtype=None, **kwargs): -> 1336 x = self.compute() 1337 if dtype and x.dtype != dtype: 1338 x = x.astype(dtype) ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\dask\base.py in compute(self, **kwargs) 164 dask.base.compute 165 """""" --> 166 (result,) = compute(self, traverse=False, **kwargs) 167 return result 168 ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\dask\base.py in compute(*args, **kwargs) 442 postcomputes.append(x.__dask_postcompute__()) 443 --> 444 results = schedule(dsk, keys, **kwargs) 445 return repack([f(r, *a) for r, (f, a) in zip(results, postcomputes)]) 446 ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\dask\threaded.py in get(dsk, result, cache, num_workers, pool, **kwargs) 74 pools[thread][num_workers] = pool 75 ---> 76 results = get_async( 77 pool.apply_async, 78 len(pool._pool), ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\dask\local.py in get_async(apply_async, num_workers, dsk, result, cache, get_id, rerun_exceptions_locally, pack_exception, raise_exception, callbacks, dumps, loads, **kwargs) 484 _execute_task(task, data) # Re-execute locally 485 else: --> 486 raise_exception(exc, tb) 487 res, worker_id = loads(res_info) 488 state[""cache""][key] = res ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\dask\local.py in reraise(exc, tb) 314 if exc.__traceback__ is not tb: 315 raise exc.with_traceback(tb) --> 316 raise exc 317 318 ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\dask\local.py in execute_task(key, task_info, dumps, loads, get_id, pack_exception) 220 try: 221 task, data = loads(task_info) --> 222 result = _execute_task(task, data) 223 id = get_id() 224 result = dumps((result, id)) ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\dask\core.py in _execute_task(arg, cache, dsk) 119 # temporaries by their reference count and can execute certain 120 # operations in-place. --> 121 return func(*(_execute_task(a, cache) for a in args)) 122 elif not ishashable(arg): 123 return arg ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\dask\core.py in (.0) 119 # temporaries by their reference count and can execute certain 120 # operations in-place. --> 121 return func(*(_execute_task(a, cache) for a in args)) 122 elif not ishashable(arg): 123 return arg ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\dask\core.py in _execute_task(arg, cache, dsk) 119 # temporaries by their reference count and can execute certain 120 # operations in-place. --> 121 return func(*(_execute_task(a, cache) for a in args)) 122 elif not ishashable(arg): 123 return arg ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\dask\core.py in (.0) 119 # temporaries by their reference count and can execute certain 120 # operations in-place. --> 121 return func(*(_execute_task(a, cache) for a in args)) 122 elif not ishashable(arg): 123 return arg ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\dask\core.py in _execute_task(arg, cache, dsk) 119 # temporaries by their reference count and can execute certain 120 # operations in-place. --> 121 return func(*(_execute_task(a, cache) for a in args)) 122 elif not ishashable(arg): 123 return arg ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\dask\core.py in (.0) 119 # temporaries by their reference count and can execute certain 120 # operations in-place. --> 121 return func(*(_execute_task(a, cache) for a in args)) 122 elif not ishashable(arg): 123 return arg ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\dask\core.py in _execute_task(arg, cache, dsk) 119 # temporaries by their reference count and can execute certain 120 # operations in-place. --> 121 return func(*(_execute_task(a, cache) for a in args)) 122 elif not ishashable(arg): 123 return arg ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\dask\array\core.py in getter(a, b, asarray, lock) 98 c = a[b] 99 if asarray: --> 100 c = np.asarray(c) 101 finally: 102 if lock: ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\numpy\core\_asarray.py in asarray(a, dtype, order) 83 84 """""" ---> 85 return array(a, dtype, copy=False, order=order) 86 87 ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\xarray\core\indexing.py in __array__(self, dtype) 489 490 def __array__(self, dtype=None): --> 491 return np.asarray(self.array, dtype=dtype) 492 493 def __getitem__(self, key): ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\numpy\core\_asarray.py in asarray(a, dtype, order) 83 84 """""" ---> 85 return array(a, dtype, copy=False, order=order) 86 87 ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\xarray\core\indexing.py in __array__(self, dtype) 651 652 def __array__(self, dtype=None): --> 653 return np.asarray(self.array, dtype=dtype) 654 655 def __getitem__(self, key): ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\numpy\core\_asarray.py in asarray(a, dtype, order) 83 84 """""" ---> 85 return array(a, dtype, copy=False, order=order) 86 87 ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\xarray\core\indexing.py in __array__(self, dtype) 555 def __array__(self, dtype=None): 556 array = as_indexable(self.array) --> 557 return np.asarray(array[self.key], dtype=None) 558 559 def transpose(self, order): ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\numpy\core\_asarray.py in asarray(a, dtype, order) 83 84 """""" ---> 85 return array(a, dtype, copy=False, order=order) 86 87 ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\xarray\coding\variables.py in __array__(self, dtype) 70 71 def __array__(self, dtype=None): ---> 72 return self.func(self.array) 73 74 def __repr__(self): ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\xarray\coding\variables.py in _scale_offset_decoding(data, scale_factor, add_offset, dtype) 216 217 def _scale_offset_decoding(data, scale_factor, add_offset, dtype): --> 218 data = np.array(data, dtype=dtype, copy=True) 219 if scale_factor is not None: 220 data *= scale_factor ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\xarray\coding\variables.py in __array__(self, dtype) 70 71 def __array__(self, dtype=None): ---> 72 return self.func(self.array) 73 74 def __repr__(self): ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\xarray\coding\variables.py in _apply_mask(data, encoded_fill_values, decoded_fill_value, dtype) 136 ) -> np.ndarray: 137 """"""Mask all matching values in a NumPy arrays."""""" --> 138 data = np.asarray(data, dtype=dtype) 139 condition = False 140 for fv in encoded_fill_values: ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\numpy\core\_asarray.py in asarray(a, dtype, order) 83 84 """""" ---> 85 return array(a, dtype, copy=False, order=order) 86 87 ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\xarray\core\indexing.py in __array__(self, dtype) 555 def __array__(self, dtype=None): 556 array = as_indexable(self.array) --> 557 return np.asarray(array[self.key], dtype=None) 558 559 def transpose(self, order): ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\xarray\backends\netCDF4_.py in __getitem__(self, key) 70 71 def __getitem__(self, key): ---> 72 return indexing.explicit_indexing_adapter( 73 key, self.shape, indexing.IndexingSupport.OUTER, self._getitem 74 ) ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\xarray\core\indexing.py in explicit_indexing_adapter(key, shape, indexing_support, raw_indexing_method) 835 """""" 836 raw_key, numpy_indices = decompose_indexer(key, shape, indexing_support) --> 837 result = raw_indexing_method(raw_key.tuple) 838 if numpy_indices.tuple: 839 # index the loaded np.ndarray ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\xarray\backends\netCDF4_.py in _getitem(self, key) 83 with self.datastore.lock: 84 original_array = self.get_array(needs_lock=False) ---> 85 array = getitem(original_array, key) 86 except IndexError: 87 # Catch IndexError in netCDF4 and return a more informative ~\AppData\Local\Continuum\miniconda3\envs\TEST\lib\site-packages\xarray\backends\common.py in robust_getitem(array, key, catch, max_retries, initial_delay) 52 for n in range(max_retries + 1): 53 try: ---> 54 return array[key] 55 except catch: 56 if n == max_retries: netCDF4\_netCDF4.pyx in netCDF4._netCDF4.Variable.__getitem__() netCDF4\_netCDF4.pyx in netCDF4._netCDF4.Variable._get() netCDF4\_netCDF4.pyx in netCDF4._netCDF4._ensure_nc_success() RuntimeError: NetCDF: Access failure```","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,614144170 https://github.com/pydata/xarray/issues/4043#issuecomment-627326097,https://api.github.com/repos/pydata/xarray/issues/4043,627326097,MDEyOklzc3VlQ29tbWVudDYyNzMyNjA5Nw==,950575,2020-05-12T12:58:16Z,2020-05-12T12:58:16Z,CONTRIBUTOR,"I installed xarray through the recommended command in the official website in my minicoda env some months-year ago That is probably it then. I see you have `libnetcdf 4.6.2`, if you recreate that env you should get `libnetcdf 4.7.4`. Can you try it with a new clean env: ```shell conda create --name TEST --channel conda-forge xarray dask netCDF4 bottleneck ```","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,614144170 https://github.com/pydata/xarray/issues/4043#issuecomment-625675263,https://api.github.com/repos/pydata/xarray/issues/4043,625675263,MDEyOklzc3VlQ29tbWVudDYyNTY3NTI2Mw==,48764870,2020-05-08T07:16:47Z,2020-05-08T09:10:13Z,NONE,"thank you @ocefpaf , I installed xarray through the recommended command in the official website in my minicoda env some months-year ago: ```python conda install -c conda-forge xarray dask netCDF4 bottleneck ``` I list my versions below: ``` INSTALLED VERSIONS ------------------ commit: None python: 3.6.7 (default, Feb 28 2019, 07:28:18) [MSC v.1900 64 bit (AMD64)] python-bits: 64 OS: Windows OS-release: 10 machine: AMD64 processor: Intel64 Family 6 Model 42 Stepping 7, GenuineIntel byteorder: little LC_ALL: None LANG: None LOCALE: None.None libhdf5: 1.10.4 libnetcdf: 4.6.2 xarray: 0.12.1 pandas: 0.24.2 numpy: 1.16.3 scipy: 1.2.1 netCDF4: 1.5.1.2 pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: 1.0.3.4 nc_time_axis: 1.2.0 PseudonetCDF: None rasterio: None cfgrib: 0.9.6.2 iris: None bottleneck: None dask: 1.1.5 distributed: 1.28.1 matplotlib: 3.0.3 cartopy: 0.16.0 seaborn: None setuptools: 41.0.1 pip: 19.1.1 conda: 4.8.2 pytest: None IPython: 7.5.0 sphinx: None ``` I'v just created a new environment with python3.7 and all last versions and the result is the same error, I list this new environment below also: ``` INSTALLED VERSIONS ------------------ commit: None python: 3.7.7 (default, May 6 2020, 11:45:54) [MSC v.1916 64 bit (AMD64)] python-bits: 64 OS: Windows OS-release: 10 machine: AMD64 processor: Intel64 Family 6 Model 42 Stepping 7, GenuineIntel byteorder: little LC_ALL: None LANG: None LOCALE: None.None libhdf5: 1.10.4 libnetcdf: 4.7.3 xarray: 0.15.1 pandas: 1.0.3 numpy: 1.18.1 scipy: 1.4.1 netCDF4: 1.5.3 pydap: installed h5netcdf: None h5py: None Nio: None zarr: None cftime: 1.1.2 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: 1.3.2 dask: 2.15.0 distributed: 2.15.2 matplotlib: None cartopy: None seaborn: None numbagg: None setuptools: 46.1.3.post20200330 pip: 20.0.2 conda: None pytest: None IPython: 7.13.0 sphinx: None ``` Thank you in advance!","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,614144170 https://github.com/pydata/xarray/issues/4043#issuecomment-625426383,https://api.github.com/repos/pydata/xarray/issues/4043,625426383,MDEyOklzc3VlQ29tbWVudDYyNTQyNjM4Mw==,950575,2020-05-07T18:35:20Z,2020-05-07T18:35:20Z,CONTRIBUTOR,"How are you installing `netcdf4`? There was a problem with the underlying `libetcdf` some time ago that caused access failures like that. You can try upgrading it or using another backend, like `pydap`.","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,614144170 https://github.com/pydata/xarray/issues/4043#issuecomment-625330036,https://api.github.com/repos/pydata/xarray/issues/4043,625330036,MDEyOklzc3VlQ29tbWVudDYyNTMzMDAzNg==,48764870,2020-05-07T15:36:15Z,2020-05-07T15:36:15Z,NONE,"Totally agree, from my code the list of url are: ```python Loading files: http://193.144.213.180:8080/thredds/dodsC/Wind/Wind_ERA5/Global/Wind_ERA5_Global_1998.05.nc http://193.144.213.180:8080/thredds/dodsC/Wind/Wind_ERA5/Global/Wind_ERA5_Global_1998.06.nc ``` and through the web browser I can copy paste for that dates this: ```python http://193.144.213.180:8080/thredds/dodsC/Wind/Wind_ERA5/Global/Wind_ERA5_Global_1998.05.nc http://193.144.213.180:8080/thredds/dodsC/Wind/Wind_ERA5/Global/Wind_ERA5_Global_1998.06.nc ``` So I think the URL is properly constructed, indeed if I select only the longitude variable, which is quit small, I can perform the ds.to_dataframe() method... so I think url is fine! ","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,614144170 https://github.com/pydata/xarray/issues/4043#issuecomment-625325400,https://api.github.com/repos/pydata/xarray/issues/4043,625325400,MDEyOklzc3VlQ29tbWVudDYyNTMyNTQwMA==,2448579,2020-05-07T15:28:21Z,2020-05-07T15:28:21Z,MEMBER,"It's unfortunate that we don't print filenames when access fails. Are you sure all the urls you construct are actually valid?","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,614144170