html_url,issue_url,id,node_id,user,created_at,updated_at,author_association,body,reactions,performed_via_github_app,issue https://github.com/pydata/xarray/issues/3381#issuecomment-541160571,https://api.github.com/repos/pydata/xarray/issues/3381,541160571,MDEyOklzc3VlQ29tbWVudDU0MTE2MDU3MQ==,1634164,2019-10-11T17:49:09Z,2019-10-11T17:49:09Z,NONE,"Thanks both for the comments. I understand sparse's behaviour; to clarify, the bug (IMO) is that xarray doesn't handle this for the user. To condense my example: ```python # Same as above to --- import numpy as np import pandas as pd import xarray as xr foo = [f'foo{i}' for i in range(6)] bar = [f'bar{i}' for i in range(6)] raw = np.random.rand(len(foo) // 2, len(bar)) b_series = pd.DataFrame(raw, index=foo[3:], columns=bar) \ .stack() \ .rename_axis(index=['foo', 'bar']) # --- b = xr.DataArray.from_series(b_series, sparse=True) c = b.sum(dim='foo').expand_dims({'foo': ['total']}) d = xr.concat([b, c], dim='foo') ``` This succeeds when `sparse=False` and fails when `sparse=True`. - Shouldn't it succeed automatically? I feel like it should. - If it does, what should be the fill value on `d`? I'm not clear what the intended behaviour is. I haven't touched xarray internals before, but if time allows I will try to add some tests.","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,503711327