html_url,issue_url,id,node_id,user,created_at,updated_at,author_association,body,reactions,performed_via_github_app,issue
https://github.com/pydata/xarray/issues/3237#issuecomment-524075569,https://api.github.com/repos/pydata/xarray/issues/3237,524075569,MDEyOklzc3VlQ29tbWVudDUyNDA3NTU2OQ==,13190237,2019-08-22T21:00:34Z,2019-08-22T21:00:34Z,CONTRIBUTOR,"Thanks @shoyer. Cool, then this was easier than I expected. I added the patch and nanargmax/min to the nputils in #3244. What do you think?","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,483280810
https://github.com/pydata/xarray/issues/3237#issuecomment-523952983,https://api.github.com/repos/pydata/xarray/issues/3237,523952983,MDEyOklzc3VlQ29tbWVudDUyMzk1Mjk4Mw==,13190237,2019-08-22T15:22:33Z,2019-08-22T15:22:33Z,CONTRIBUTOR,"Those little changes do solve the MCVE, but break at least one test. I don't have enough of an understanding of the (nan)ops logic in xarray to get around the issue. But may be this helps:
#### The change
```
diff --git a/xarray/core/nanops.py b/xarray/core/nanops.py
index 9ba4eae2..784a1d01 100644
--- a/xarray/core/nanops.py
+++ b/xarray/core/nanops.py
@@ -91,17 +91,9 @@ def nanargmin(a, axis=None):
fill_value = dtypes.get_pos_infinity(a.dtype)
if a.dtype.kind == ""O"":
return _nan_argminmax_object(""argmin"", fill_value, a, axis=axis)
- a, mask = _replace_nan(a, fill_value)
- if isinstance(a, dask_array_type):
- res = dask_array.argmin(a, axis=axis)
- else:
- res = np.argmin(a, axis=axis)
- if mask is not None:
- mask = mask.all(axis=axis)
- if mask.any():
- raise ValueError(""All-NaN slice encountered"")
- return res
+ module = dask_array if isinstance(a, dask_array_type) else nputils
+ return module.nanargmin(a, axis=axis)
def nanargmax(a, axis=None):
@@ -109,17 +101,8 @@ def nanargmax(a, axis=None):
if a.dtype.kind == ""O"":
return _nan_argminmax_object(""argmax"", fill_value, a, axis=axis)
- a, mask = _replace_nan(a, fill_value)
- if isinstance(a, dask_array_type):
- res = dask_array.argmax(a, axis=axis)
- else:
- res = np.argmax(a, axis=axis)
-
- if mask is not None:
- mask = mask.all(axis=axis)
- if mask.any():
- raise ValueError(""All-NaN slice encountered"")
- return res
+ module = dask_array if isinstance(a, dask_array_type) else nputils
+ return module.nanargmax(a, axis=axis)
def nansum(a, axis=None, dtype=None, out=None, min_count=None):
```
#### The failing test
``` python
...
___________ TestVariable.test_reduce ________________
...
def f(values, axis=None, skipna=None, **kwargs):
if kwargs.pop(""out"", None) is not None:
raise TypeError(""`out` is not valid for {}"".format(name))
values = asarray(values)
if coerce_strings and values.dtype.kind in ""SU"":
values = values.astype(object)
func = None
if skipna or (skipna is None and values.dtype.kind in ""cfO""):
nanname = ""nan"" + name
func = getattr(nanops, nanname)
else:
func = _dask_or_eager_func(name)
try:
return func(values, axis=axis, **kwargs)
except AttributeError:
if isinstance(values, dask_array_type):
try: # dask/dask#3133 dask sometimes needs dtype argument
# if func does not accept dtype, then raises TypeError
return func(values, axis=axis, dtype=values.dtype, **kwargs)
except (AttributeError, TypeError):
msg = ""%s is not yet implemented on dask arrays"" % name
else:
msg = (
""%s is not available with skipna=False with the ""
""installed version of numpy; upgrade to numpy 1.12 ""
""or newer to use skipna=True or skipna=None"" % name
)
> raise NotImplementedError(msg)
E NotImplementedError: argmax is not available with skipna=False with the installed version of numpy; upgrade to numpy 1.12 or newer to use skipna=True or skipna=None
...
```
Note: I habe numpy 1.17 instaleed so the error msg here seems missleading.
","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,483280810