html_url,issue_url,id,node_id,user,created_at,updated_at,author_association,body,reactions,performed_via_github_app,issue https://github.com/pydata/xarray/issues/2534#issuecomment-1114347244,https://api.github.com/repos/pydata/xarray/issues/2534,1114347244,IC_kwDOAMm_X85Ca5bs,5635139,2022-05-01T22:04:43Z,2022-05-01T22:04:43Z,MEMBER,"Sorry these didn't get responses. It's possible that `to_dataframe` is doing some unstacking that's causing huge arrays to be allocated. I don't doubt these examples are real — though the `* 1` example above is very surprising — but we do need reproducible examples to engage. Please reopen or start a new issue with a reproducible example, thanks.","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,376370028 https://github.com/pydata/xarray/issues/2534#issuecomment-1114305976,https://api.github.com/repos/pydata/xarray/issues/2534,1114305976,IC_kwDOAMm_X85CavW4,26384082,2022-05-01T18:37:45Z,2022-05-01T18:37:45Z,NONE,"In order to maintain a list of currently relevant issues, we mark issues as stale after a period of inactivity If this issue remains relevant, please comment here or remove the `stale` label; otherwise it will be marked as closed automatically ","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,376370028 https://github.com/pydata/xarray/issues/2534#issuecomment-613068333,https://api.github.com/repos/pydata/xarray/issues/2534,613068333,MDEyOklzc3VlQ29tbWVudDYxMzA2ODMzMw==,8419421,2020-04-13T19:57:08Z,2020-04-13T19:57:08Z,NONE,"Here is another example: ``` import xarray as xr ncdata = xr.open_dataset('https://thredds.ucar.edu/thredds/dodsC/nws/metar/ncdecoded/files/Surface_METAR_20200411_0000.nc') df = ncdata.to_dataframe() ``` Output is: ``` Traceback (most recent call last): File ""bug.py"", line 4, in df = ncdata.to_dataframe() File ""/home/decker/miniconda3/envs/met212/lib/python3.8/site-packages/xarray/core/dataset.py"", line 4399, in to_dataframe return self._to_dataframe(self.dims) File ""/home/decker/miniconda3/envs/met212/lib/python3.8/site-packages/xarray/core/dataset.py"", line 4385, in _to_dataframe data = [ File ""/home/decker/miniconda3/envs/met212/lib/python3.8/site-packages/xarray/core/dataset.py"", line 4386, in self._variables[k].set_dims(ordered_dims).values.reshape(-1) MemoryError: Unable to allocate array with shape (117819, 5021) and data type |S64 ``` If I'm doing the math right, xarray is trying to allocate roughly 35 GB even though this NetCDF file is only on the order of 50 MB in size. Output of `xr.show_versions()`
Details ``` INSTALLED VERSIONS ------------------ commit: None python: 3.8.1 | packaged by conda-forge | (default, Jan 5 2020, 20:58:18) [GCC 7.3.0] python-bits: 64 OS: Linux OS-release: 5.4.31-1-MANJARO machine: x86_64 processor: byteorder: little LC_ALL: None LANG: en_US.utf8 LOCALE: en_US.UTF-8 libhdf5: 1.10.5 libnetcdf: 4.7.3 xarray: 0.14.1 pandas: 0.25.3 numpy: 1.17.5 scipy: 1.4.1 netCDF4: 1.5.3 pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: 1.0.4.2 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: None distributed: None matplotlib: 3.1.2 cartopy: 0.17.0 seaborn: None numbagg: None setuptools: 45.1.0.post20200119 pip: 19.3.1 conda: None pytest: 5.3.4 IPython: 7.11.1 sphinx: None ```
","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,376370028