html_url,issue_url,id,node_id,user,created_at,updated_at,author_association,body,reactions,performed_via_github_app,issue
https://github.com/pydata/xarray/issues/2499#issuecomment-432846749,https://api.github.com/repos/pydata/xarray/issues/2499,432846749,MDEyOklzc3VlQ29tbWVudDQzMjg0Njc0OQ==,1328158,2018-10-24T22:14:08Z,2018-10-24T22:14:08Z,NONE,"I have had some success using `apply_ufunc` in tandem with `multiprocessing`. Apparently, I can't (seamlessly) use dask arrays in place of numpy arrays within the functions where I am performing my computations, as [it's not possible to assign values into dask arrays using integer indexing](https://stackoverflow.com/questions/52933553/dask-assignment-error-when-updating-a-value-in-a-dask-array-using-typical-numpy).","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,372244156
https://github.com/pydata/xarray/issues/2499#issuecomment-431684522,https://api.github.com/repos/pydata/xarray/issues/2499,431684522,MDEyOklzc3VlQ29tbWVudDQzMTY4NDUyMg==,1328158,2018-10-21T16:49:35Z,2018-10-21T19:43:27Z,NONE,"Thanks, Zac.
I have used various options with the `chunks` argument, e.g. `chunks={'lat': 10, 'lon': 10}`, all of which appear to have a similar effect. Maybe I just haven't yet hit upon the sweet spot chunk sizes?
Is there a rule-of-thumb approach to determining the chunk sizes for a dataset? Perhaps before setting the chunk sizes I could open the dataset to poll the dimensions of the variables and based on that come up with reasonable chunk sizes, or none at all if the dataset is reasonably small?
My computations typically use a full time series per lat/lon point, so my assumption has been that I don't want to use chunking on the time dimension -- is this correct?
I have been testing this code using two versions of a precipitation dataset, the full resolution is (time=1481, lat=596, lon=1385) and the low-resolution version (for faster tests) is (time=1466, lat=38, lon=87). Results of `ncdump` and `repr(xr.open_dataset(netcdf_precip))` are below.
```
$ ncdump -h nclimgrid_prcp.nc
netcdf nclimgrid_prcp {
dimensions:
time = UNLIMITED ; // (1481 currently)
lat = 596 ;
lon = 1385 ;
variables:
int time(time) ;
time:long_name = ""Time, in monthly increments"" ;
time:standard_name = ""time"" ;
time:calendar = ""gregorian"" ;
time:units = ""days since 1800-01-01 00:00:00"" ;
time:axis = ""T"" ;
float lat(lat) ;
lat:standard_name = ""latitude"" ;
lat:long_name = ""Latitude"" ;
lat:units = ""degrees_north"" ;
lat:axis = ""Y"" ;
lat:valid_min = 24.56253f ;
lat:valid_max = 49.3542f ;
float lon(lon) ;
lon:standard_name = ""longitude"" ;
lon:long_name = ""Longitude"" ;
lon:units = ""degrees_east"" ;
lon:axis = ""X"" ;
lon:valid_min = -124.6875f ;
lon:valid_max = -67.02084f ;
float prcp(time, lat, lon) ;
prcp:_FillValue = NaNf ;
prcp:least_significant_digit = 3LL ;
prcp:valid_min = 0.f ;
prcp:coordinates = ""time lat lon"" ;
prcp:long_name = ""Precipitation, monthly total"" ;
prcp:standard_name = ""precipitation_amount"" ;
prcp:references = ""GHCN-Monthly Version 3 (Vose et al. 2011), NCEI/NOAA, https://www.ncdc.noaa.gov/ghcnm/v3.php"" ;
prcp:units = ""millimeter"" ;
prcp:valid_max = 2000.f ;
// global attributes:
:date_created = ""2018-02-15 10:29:25.485927"" ;
:date_modified = ""2018-02-15 10:29:25.486042"" ;
:Conventions = ""CF-1.6, ACDD-1.3"" ;
:ncei_template_version = ""NCEI_NetCDF_Grid_Template_v2.0"" ;
:title = ""nClimGrid"" ;
:naming_authority = ""gov.noaa.ncei"" ;
:standard_name_vocabulary = ""Standard Name Table v35"" ;
:institution = ""National Centers for Environmental Information (NCEI), NOAA, Department of Commerce"" ;
:geospatial_lat_min = 24.56253f ;
:geospatial_lat_max = 49.3542f ;
:geospatial_lon_min = -124.6875f ;
:geospatial_lon_max = -67.02084f ;
:geospatial_lat_units = ""degrees_north"" ;
:geospatial_lon_units = ""degrees_east"" ;
}
/* repr(ds) below: */
Dimensions: (lat: 596, lon: 1385, time: 1481)
Coordinates:
* time (time) datetime64[ns] 1895-01-01 1895-02-01 ... 2018-05-01
* lat (lat) float32 49.3542 49.312534 49.270866 ... 24.6042 24.562532
* lon (lon) float32 -124.6875 -124.645836 ... -67.0625 -67.020836
Data variables:
prcp (time, lat, lon) float32 ...
Attributes:
date_created: 2018-02-15 10:29:25.485927
date_modified: 2018-02-15 10:29:25.486042
Conventions: CF-1.6, ACDD-1.3
ncei_template_version: NCEI_NetCDF_Grid_Template_v2.0
title: nClimGrid
naming_authority: gov.noaa.ncei
standard_name_vocabulary: Standard Name Table v35
institution: National Centers for Environmental Information...
geospatial_lat_min: 24.562532
geospatial_lat_max: 49.3542
geospatial_lon_min: -124.6875
geospatial_lon_max: -67.020836
geospatial_lat_units: degrees_north
geospatial_lon_units: degrees_east
```
","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,372244156