html_url,issue_url,id,node_id,user,created_at,updated_at,author_association,body,reactions,performed_via_github_app,issue https://github.com/pydata/xarray/issues/2313#issuecomment-778554202,https://api.github.com/repos/pydata/xarray/issues/2313,778554202,MDEyOklzc3VlQ29tbWVudDc3ODU1NDIwMg==,17162724,2021-02-13T03:20:58Z,2021-02-13T03:20:58Z,CONTRIBUTOR,"Edit: Copied and pasted from a duplicate issue I opened. Closing that and moving convo here. @jhamman's SO answer circa 2018 helped me this week https://stackoverflow.com/a/51714004/6046019 I wonder if it's worth (not sure where) providing an example of how to use `preprocesses` with `open_mfdataset`? Add an Examples entry to the doc string? (http://xarray.pydata.org/en/latest/generated/xarray.open_mfdataset.html / https://github.com/pydata/xarray/blob/5296ed18272a856d478fbbb3d3253205508d1c2d/xarray/backends/api.py#L895) While not a small example (as the remote files are large) this is how I used it: ``` import xarray as xr import s3fs def preprocess(ds): return ds.expand_dims('time') fs = s3fs.S3FileSystem(anon=True) f1 = fs.open('s3://fmi-opendata-rcrhirlam-surface-grib/2021/02/03/00/numerical-hirlam74-forecast-MaximumWind-20210203T000000Z.grb2') f2 = fs.open('s3://fmi-opendata-rcrhirlam-surface-grib/2021/02/03/06/numerical-hirlam74-forecast-MaximumWind-20210203T060000Z.grb2') ds = xr.open_mfdataset([f1, f2], engine=""cfgrib"", preprocess=preprocess, parallel=True) ``` with one file looking like: ``` xr.open_dataset(""LOCAL_numerical-hirlam74-forecast-MaximumWind-20210203T000000Z.grb2"", engine=""cfgrib"") Dimensions: (latitude: 947, longitude: 5294, step: 55) Coordinates: time datetime64[ns] ... * step (step) timedelta64[ns] 01:00:00 ... 2 days 07:00:00 heightAboveGround int64 ... * latitude (latitude) float64 25.65 25.72 25.78 ... 89.86 89.93 90.0 * longitude (longitude) float64 -180.0 -179.9 -179.9 ... 179.9 180.0 valid_time (step) datetime64[ns] ... Data variables: fg10 (step, latitude, longitude) float32 ... Attributes: GRIB_edition: 2 GRIB_centre: ecmf GRIB_centreDescription: European Centre for Medium-Range Weather Forecasts GRIB_subCentre: 0 Conventions: CF-1.7 institution: European Centre for Medium-Range Weather Forecasts history: 2021-02-12T18:06:52 GRIB to CDM+CF via cfgrib-0.... ``` A smaller example could be (WIP; note I was hoping ds would concat along t but it doesn't do what I expect) ``` import numpy as np import xarray as xr f1 = xr.DataArray(np.arange(2), coords=[np.arange(2)], dims=[""a""], name=""f1"") f1 = f1.assign_coords(t=0) f1.to_dataset().to_zarr(""f1.zarr"") # What's the best way to store small files to open again with mf_dataset? csv via xarray objects? can you use open_mfdataset on pkl objects? f2 = xr.DataArray(np.arange(2), coords=[np.arange(2)], dims=[""a""], name=""f2"") f2 = f2.assign_coords(t=1) f2.to_dataset().to_zarr(""f2.zarr"") # Concat along t def preprocess(ds): return ds.expand_dims('t') ds = xr.open_mfdataset([""f1.zarr"", ""f2.zarr""], engine=""zarr"", concat_dim=""t"", preprocess=preprocess) >>> ds Dimensions: (a: 2, t: 1) Coordinates: * t (t) int64 0 * a (a) int64 0 1 Data variables: f1 (t, a) int64 dask.array f2 (t, a) int64 dask.array ```","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,344614881