html_url,issue_url,id,node_id,user,created_at,updated_at,author_association,body,reactions,performed_via_github_app,issue https://github.com/pydata/xarray/issues/2313#issuecomment-1468024753,https://api.github.com/repos/pydata/xarray/issues/2313,1468024753,IC_kwDOAMm_X85XgEex,61923007,2023-03-14T12:35:00Z,2023-03-14T12:35:00Z,NONE,"I'll like to work on this @TomNicholas, where do I start from? ","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,344614881 https://github.com/pydata/xarray/issues/2313#issuecomment-1142381856,https://api.github.com/repos/pydata/xarray/issues/2313,1142381856,IC_kwDOAMm_X85EF10g,2448579,2022-05-31T16:51:57Z,2022-05-31T16:51:57Z,MEMBER,"I bet you need to `ds.precip.max(""time"", keepdims=True)` so that the returned value has the `time` dimension. Please ask usage questions at https://github.com/pydata/xarray/discussions next time","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,344614881 https://github.com/pydata/xarray/issues/2313#issuecomment-1135302642,https://api.github.com/repos/pydata/xarray/issues/2313,1135302642,IC_kwDOAMm_X85Dq1fy,54370222,2022-05-24T01:31:22Z,2022-05-24T01:31:22Z,NONE,"Hello: I have to find maximum precipitation of each year (for example: 2007 and 2008, Dataset link are: [2007](https://downloads.psl.noaa.gov/Datasets/cpc_us_precip/RT/precip.V1.0.2007.nc) and [2008](https://downloads.psl.noaa.gov/Datasets/cpc_us_precip/RT/precip.V1.0.2008.nc)). I have done this using resample method (i.e. `.resample(time='Y').max()`) after concatenating it along time dimension. Following along [SO](https://stackoverflow.com/questions/51709266/using-xarray-to-open-a-multi-file-dataset-when-both-the-files-and-dataset-have-a), I am wondering if I can use preprocess to find maximum (or minimum or average) for each file first and then concatenate it using time dimension. I tried the following code and was not successful. Can someone help me with this? ```import dask.array as da import numpy as np import xarray as xr from dask.distributed import Client client = Client() client def preprocess_func(ds): '''Get maximum (or minimum or average) from each file and concatenate along time''' return ds.precip.max('time') prec_ds=xr.open_mfdataset([prec_2007,prec_2008], chunks={""lat"": 25,""lon"": 25,""time"": -1,}, preprocess=preprocess_func, concat_dim='time')``` ","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,344614881 https://github.com/pydata/xarray/issues/2313#issuecomment-1062761948,https://api.github.com/repos/pydata/xarray/issues/2313,1062761948,IC_kwDOAMm_X84_WHXc,30007270,2022-03-09T10:13:09Z,2022-03-09T10:13:09Z,NONE,"Seconding @dcherian's comment in #4901 on an example for `.encoding['source']`. Working off @raybellwaves' example, something like this would have been useful to me: ``` >>> import xarray as xr >>> import numpy as np >>> model1 = xr.DataArray(np.arange(2), coords=[np.arange(2)], name=""f"") >>> model1.to_dataset().to_netcdf(""model1.nc"") >>> model2 = xr.DataArray(np.arange(2), coords=[np.arange(2)], name=""f"") >>> model2.to_dataset().to_netcdf(""model2.nc"") >>> ds = xr.open_mfdataset( ... [""model1.nc"", ""model2.nc""], ... preprocess=lambda ds: ds.expand_dims( ... {""model_name"": [ds.encoding[""source""].split(""/"")[-1].split(""."")[0]]} ... ), ... ) >>> ds Dimensions: (dim_0: 2, model_name: 2) Coordinates: * dim_0 (dim_0) int64 0 1 * model_name (model_name) object 'model1' 'model2' Data variables: f (model_name, dim_0) int64 dask.array ``` On that note, the example above seems to work with some slight changes: ``` >>> import numpy as np >>> import xarray as xr >>> >>> f1 = xr.DataArray(np.arange(2), coords=[np.arange(2)], dims=[""a""], name=""f1"") >>> f1 = f1.assign_coords(t='t0') >>> f1.to_dataset().to_netcdf(""f1.nc"") >>> >>> f2 = xr.DataArray(np.arange(2), coords=[np.arange(2)], dims=[""a""], name=""f2"") >>> f2 = f2.assign_coords(t='t1') >>> f2.to_dataset().to_netcdf(""f2.nc"") >>> >>> # Concat along t >>> def preprocess(ds): ... return ds.expand_dims(""t"") ... >>> >>> ds = xr.open_mfdataset([""f1.nc"", ""f2.nc""], concat_dim=""t"", preprocess=preprocess) >>> ds Dimensions: (a: 2, t: 2) Coordinates: * t (t) object 't0' 't1' * a (a) int64 0 1 Data variables: f1 (t, a) float64 dask.array f2 (t, a) float64 dask.array ```","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,344614881 https://github.com/pydata/xarray/issues/2313#issuecomment-778554202,https://api.github.com/repos/pydata/xarray/issues/2313,778554202,MDEyOklzc3VlQ29tbWVudDc3ODU1NDIwMg==,17162724,2021-02-13T03:20:58Z,2021-02-13T03:20:58Z,CONTRIBUTOR,"Edit: Copied and pasted from a duplicate issue I opened. Closing that and moving convo here. @jhamman's SO answer circa 2018 helped me this week https://stackoverflow.com/a/51714004/6046019 I wonder if it's worth (not sure where) providing an example of how to use `preprocesses` with `open_mfdataset`? Add an Examples entry to the doc string? (http://xarray.pydata.org/en/latest/generated/xarray.open_mfdataset.html / https://github.com/pydata/xarray/blob/5296ed18272a856d478fbbb3d3253205508d1c2d/xarray/backends/api.py#L895) While not a small example (as the remote files are large) this is how I used it: ``` import xarray as xr import s3fs def preprocess(ds): return ds.expand_dims('time') fs = s3fs.S3FileSystem(anon=True) f1 = fs.open('s3://fmi-opendata-rcrhirlam-surface-grib/2021/02/03/00/numerical-hirlam74-forecast-MaximumWind-20210203T000000Z.grb2') f2 = fs.open('s3://fmi-opendata-rcrhirlam-surface-grib/2021/02/03/06/numerical-hirlam74-forecast-MaximumWind-20210203T060000Z.grb2') ds = xr.open_mfdataset([f1, f2], engine=""cfgrib"", preprocess=preprocess, parallel=True) ``` with one file looking like: ``` xr.open_dataset(""LOCAL_numerical-hirlam74-forecast-MaximumWind-20210203T000000Z.grb2"", engine=""cfgrib"") Dimensions: (latitude: 947, longitude: 5294, step: 55) Coordinates: time datetime64[ns] ... * step (step) timedelta64[ns] 01:00:00 ... 2 days 07:00:00 heightAboveGround int64 ... * latitude (latitude) float64 25.65 25.72 25.78 ... 89.86 89.93 90.0 * longitude (longitude) float64 -180.0 -179.9 -179.9 ... 179.9 180.0 valid_time (step) datetime64[ns] ... Data variables: fg10 (step, latitude, longitude) float32 ... Attributes: GRIB_edition: 2 GRIB_centre: ecmf GRIB_centreDescription: European Centre for Medium-Range Weather Forecasts GRIB_subCentre: 0 Conventions: CF-1.7 institution: European Centre for Medium-Range Weather Forecasts history: 2021-02-12T18:06:52 GRIB to CDM+CF via cfgrib-0.... ``` A smaller example could be (WIP; note I was hoping ds would concat along t but it doesn't do what I expect) ``` import numpy as np import xarray as xr f1 = xr.DataArray(np.arange(2), coords=[np.arange(2)], dims=[""a""], name=""f1"") f1 = f1.assign_coords(t=0) f1.to_dataset().to_zarr(""f1.zarr"") # What's the best way to store small files to open again with mf_dataset? csv via xarray objects? can you use open_mfdataset on pkl objects? f2 = xr.DataArray(np.arange(2), coords=[np.arange(2)], dims=[""a""], name=""f2"") f2 = f2.assign_coords(t=1) f2.to_dataset().to_zarr(""f2.zarr"") # Concat along t def preprocess(ds): return ds.expand_dims('t') ds = xr.open_mfdataset([""f1.zarr"", ""f2.zarr""], engine=""zarr"", concat_dim=""t"", preprocess=preprocess) >>> ds Dimensions: (a: 2, t: 1) Coordinates: * t (t) int64 0 * a (a) int64 0 1 Data variables: f1 (t, a) int64 dask.array f2 (t, a) int64 dask.array ```","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,344614881 https://github.com/pydata/xarray/issues/2313#issuecomment-410892776,https://api.github.com/repos/pydata/xarray/issues/2313,410892776,MDEyOklzc3VlQ29tbWVudDQxMDg5Mjc3Ng==,6815844,2018-08-07T00:18:02Z,2018-08-07T00:18:02Z,MEMBER,"There is a related question on [SO](https://stackoverflow.com/questions/51709266/using-xarray-to-open-a-multi-file-dataset-when-both-the-files-and-dataset-have-a). I think it is a good idea to add an example to our doc. Agreed for the question 1. I did not yet examine the question 2, but I think simple examples are generally nice.","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,344614881