html_url,issue_url,id,node_id,user,created_at,updated_at,author_association,body,reactions,performed_via_github_app,issue
https://github.com/pydata/xarray/issues/1721#issuecomment-345384115,https://api.github.com/repos/pydata/xarray/issues/1721,345384115,MDEyOklzc3VlQ29tbWVudDM0NTM4NDExNQ==,6628425,2017-11-17T22:33:37Z,2017-11-17T22:33:37Z,MEMBER,"Thanks @shoyer, I think it's the files written by the 'scipy' engine and read by the 'netcdf4' engine. Here is a minimal example:
```
In [1]: import xarray as xr
In [2]: da = xr.DataArray([1, 2, 3], dims=['x'])
In [3]: da.to_netcdf('test_netcdf4.nc', format='NETCDF3_CLASSIC', engine='netcdf4')
In [4]: ds = xr.open_dataset('test_netcdf4.nc', engine='netcdf4')
In [5]: ds = xr.open_dataset('test_netcdf4.nc', engine='scipy')
In [6]: da.to_netcdf('test_scipy.nc', format='NETCDF3_CLASSIC', engine='scipy')
In [7]: ds = xr.open_dataset('test_scipy.nc', engine='scipy')
In [8]: ds = xr.open_dataset('test_scipy.nc', engine='netcdf4')
---------------------------------------------------------------------------
IOError Traceback (most recent call last)
in ()
----> 1 ds = xr.open_dataset('test_scipy.nc', engine='netcdf4')
//anaconda/envs/research/lib/python2.7/site-packages/xarray/backends/api.pyc in open_dataset(filename_or_obj, group, decode_cf, mask_and_scale, decode_times, autoclose, concat_characters, decode_coords, engine, chunks, lock, cache, drop_variables)
280 if engine == 'netcdf4':
281 store = backends.NetCDF4DataStore(filename_or_obj, group=group,
--> 282 autoclose=autoclose)
283 elif engine == 'scipy':
284 store = backends.ScipyDataStore(filename_or_obj,
//anaconda/envs/research/lib/python2.7/site-packages/xarray/backends/netCDF4_.pyc in __init__(self, filename, mode, format, group, writer, clobber, diskless, persist, autoclose)
208 diskless=diskless, persist=persist,
209 format=format)
--> 210 self.ds = opener()
211 self._autoclose = autoclose
212 self._isopen = True
//anaconda/envs/research/lib/python2.7/site-packages/xarray/backends/netCDF4_.pyc in _open_netcdf4_group(filename, mode, group, **kwargs)
183 import netCDF4 as nc4
184
--> 185 ds = nc4.Dataset(filename, mode=mode, **kwargs)
186
187 with close_on_error(ds):
netCDF4/_netCDF4.pyx in netCDF4._netCDF4.Dataset.__init__()
netCDF4/_netCDF4.pyx in netCDF4._netCDF4._ensure_nc_success()
IOError: [Errno -36] NetCDF: Invalid argument: '/Users/skc/test_scipy.nc'
```
Here's a link to the issue upstream: https://github.com/Unidata/netcdf-c/issues/657.","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,274392275
https://github.com/pydata/xarray/issues/1721#issuecomment-345317906,https://api.github.com/repos/pydata/xarray/issues/1721,345317906,MDEyOklzc3VlQ29tbWVudDM0NTMxNzkwNg==,6628425,2017-11-17T18:02:29Z,2017-11-17T18:30:44Z,MEMBER,"@ocefpaf thanks, empirically the original did the trick, but I have edited it for correctness.","{""total_count"": 1, ""+1"": 1, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,274392275
https://github.com/pydata/xarray/issues/1721#issuecomment-345316396,https://api.github.com/repos/pydata/xarray/issues/1721,345316396,MDEyOklzc3VlQ29tbWVudDM0NTMxNjM5Ng==,6628425,2017-11-17T17:56:29Z,2017-11-17T18:02:18Z,MEMBER,"@shoyer I initially ran into that too. I think depending on the libraries you have installed (or seek to install) conda may not let you upgrade to libnetcdf 4.5.0. To get libnetcdf 4.5.0 I created a clean environment with the following specification file:
```
name: test_xarray_libnetcdf45
channels:
- conda-forge
dependencies:
- python=3.6
- netcdf4
- libnetcdf=4.5.0
- numpy
- mock
- pandas
- pytest
- pip
- dask
- scipy
```
Then from within that environment I did an editable install of the xarray master branch and ran the test suite.","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,274392275