html_url,issue_url,id,node_id,user,created_at,updated_at,author_association,body,reactions,performed_via_github_app,issue https://github.com/pydata/xarray/issues/6490#issuecomment-1101519903,https://api.github.com/repos/pydata/xarray/issues/6490,1101519903,IC_kwDOAMm_X85Bp9wf,5635139,2022-04-18T15:57:10Z,2022-04-18T15:57:10Z,MEMBER,"OK, cheers @javedali99 !","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,1206496679 https://github.com/pydata/xarray/issues/6490#issuecomment-1101518164,https://api.github.com/repos/pydata/xarray/issues/6490,1101518164,IC_kwDOAMm_X85Bp9VU,15319503,2022-04-18T15:54:30Z,2022-04-18T15:54:30Z,NONE,"Thanks @dcherian @max-sixty. I solved the issue with re-installing `xarray` and `cfgrib` individually and re-starting the kernel.","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,1206496679 https://github.com/pydata/xarray/issues/6490#issuecomment-1101504397,https://api.github.com/repos/pydata/xarray/issues/6490,1101504397,IC_kwDOAMm_X85Bp5-N,2448579,2022-04-18T15:35:23Z,2022-04-18T15:35:23Z,MEMBER," ``` # subsetting the data based on boundary coordinates ds_sel = ds2011_2014.isel(lon=(ds2011_2014.lon >= left) & (ds2011_2014.lon <= right), lat=(ds2011_2014.lat >= bottom) & (ds2011_2014.lat <= top), ) ``` Please use the `sel` method instead of a boolean mask. This will work for this dataset because `lat` and `lon` are dimension coordinates. See https://docs.xarray.dev/en/stable/user-guide/indexing.html ","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,1206496679 https://github.com/pydata/xarray/issues/6490#issuecomment-1101071306,https://api.github.com/repos/pydata/xarray/issues/6490,1101071306,IC_kwDOAMm_X85BoQPK,5635139,2022-04-18T04:08:39Z,2022-04-18T04:08:39Z,MEMBER,"I'm getting a different error around the encoding — please could the MVCE not use external data? Check out the link on the label, or the issue template, for more tips. Thanks
```python --------------------------------------------------------------------------- KeyError Traceback (most recent call last) File /srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/backends/file_manager.py:199, in CachingFileManager._acquire_with_cache_info(self, needs_lock) 198 try: --> 199 file = self._cache[self._key] 200 except KeyError: File /srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/backends/lru_cache.py:53, in LRUCache.__getitem__(self, key) 52 with self._lock: ---> 53 value = self._cache[key] 54 self._cache.move_to_end(key) KeyError: [, ('/home/jovyan/precip.V1.0.2014.nc',), 'r', (('clobber', True), ('diskless', False), ('format', 'NETCDF4'), ('persist', False))] During handling of the above exception, another exception occurred: OSError Traceback (most recent call last) Input In [5], in 1 # combine netcdf files ----> 2 ds2011_2014 = xr.open_mfdataset('precip.V1.0.*.nc', concat_dim='time', combine='nested', engine='netcdf4') File /srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/backends/api.py:908, in open_mfdataset(paths, chunks, concat_dim, compat, preprocess, engine, data_vars, coords, combine, parallel, join, attrs_file, combine_attrs, **kwargs) 905 open_ = open_dataset 906 getattr_ = getattr --> 908 datasets = [open_(p, **open_kwargs) for p in paths] 909 closers = [getattr_(ds, ""_close"") for ds in datasets] 910 if preprocess is not None: File /srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/backends/api.py:908, in (.0) 905 open_ = open_dataset 906 getattr_ = getattr --> 908 datasets = [open_(p, **open_kwargs) for p in paths] 909 closers = [getattr_(ds, ""_close"") for ds in datasets] 910 if preprocess is not None: File /srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/backends/api.py:495, in open_dataset(filename_or_obj, engine, chunks, cache, decode_cf, mask_and_scale, decode_times, decode_timedelta, use_cftime, concat_characters, decode_coords, drop_variables, backend_kwargs, *args, **kwargs) 483 decoders = _resolve_decoders_kwargs( 484 decode_cf, 485 open_backend_dataset_parameters=backend.open_dataset_parameters, (...) 491 decode_coords=decode_coords, 492 ) 494 overwrite_encoded_chunks = kwargs.pop(""overwrite_encoded_chunks"", None) --> 495 backend_ds = backend.open_dataset( 496 filename_or_obj, 497 drop_variables=drop_variables, 498 **decoders, 499 **kwargs, 500 ) 501 ds = _dataset_from_backend_dataset( 502 backend_ds, 503 filename_or_obj, (...) 510 **kwargs, 511 ) 512 return ds File /srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/backends/netCDF4_.py:553, in NetCDF4BackendEntrypoint.open_dataset(self, filename_or_obj, mask_and_scale, decode_times, concat_characters, decode_coords, drop_variables, use_cftime, decode_timedelta, group, mode, format, clobber, diskless, persist, lock, autoclose) 532 def open_dataset( 533 self, 534 filename_or_obj, (...) 549 autoclose=False, 550 ): 552 filename_or_obj = _normalize_path(filename_or_obj) --> 553 store = NetCDF4DataStore.open( 554 filename_or_obj, 555 mode=mode, 556 format=format, 557 group=group, 558 clobber=clobber, 559 diskless=diskless, 560 persist=persist, 561 lock=lock, 562 autoclose=autoclose, 563 ) 565 store_entrypoint = StoreBackendEntrypoint() 566 with close_on_error(store): File /srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/backends/netCDF4_.py:382, in NetCDF4DataStore.open(cls, filename, mode, format, group, clobber, diskless, persist, lock, lock_maker, autoclose) 376 kwargs = dict( 377 clobber=clobber, diskless=diskless, persist=persist, format=format 378 ) 379 manager = CachingFileManager( 380 netCDF4.Dataset, filename, mode=mode, kwargs=kwargs 381 ) --> 382 return cls(manager, group=group, mode=mode, lock=lock, autoclose=autoclose) File /srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/backends/netCDF4_.py:330, in NetCDF4DataStore.__init__(self, manager, group, mode, lock, autoclose) 328 self._group = group 329 self._mode = mode --> 330 self.format = self.ds.data_model 331 self._filename = self.ds.filepath() 332 self.is_remote = is_remote_uri(self._filename) File /srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/backends/netCDF4_.py:391, in NetCDF4DataStore.ds(self) 389 @property 390 def ds(self): --> 391 return self._acquire() File /srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/backends/netCDF4_.py:385, in NetCDF4DataStore._acquire(self, needs_lock) 384 def _acquire(self, needs_lock=True): --> 385 with self._manager.acquire_context(needs_lock) as root: 386 ds = _nc4_require_group(root, self._group, self._mode) 387 return ds File /srv/conda/envs/notebook/lib/python3.8/contextlib.py:113, in _GeneratorContextManager.__enter__(self) 111 del self.args, self.kwds, self.func 112 try: --> 113 return next(self.gen) 114 except StopIteration: 115 raise RuntimeError(""generator didn't yield"") from None File /srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/backends/file_manager.py:187, in CachingFileManager.acquire_context(self, needs_lock) 184 @contextlib.contextmanager 185 def acquire_context(self, needs_lock=True): 186 """"""Context manager for acquiring a file."""""" --> 187 file, cached = self._acquire_with_cache_info(needs_lock) 188 try: 189 yield file File /srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/backends/file_manager.py:205, in CachingFileManager._acquire_with_cache_info(self, needs_lock) 203 kwargs = kwargs.copy() 204 kwargs[""mode""] = self._mode --> 205 file = self._opener(*self._args, **kwargs) 206 if self._mode == ""w"": 207 # ensure file doesn't get overridden when opened again 208 self._mode = ""a"" File src/netCDF4/_netCDF4.pyx:2307, in netCDF4._netCDF4.Dataset.__init__() File src/netCDF4/_netCDF4.pyx:1925, in netCDF4._netCDF4._ensure_nc_success() OSError: [Errno -101] NetCDF: HDF error: b'/home/jovyan/precip.V1.0.2014.nc'
","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,1206496679 https://github.com/pydata/xarray/issues/6490#issuecomment-1101061409,https://api.github.com/repos/pydata/xarray/issues/6490,1101061409,IC_kwDOAMm_X85BoN0h,15319503,2022-04-18T03:38:43Z,2022-04-18T03:38:43Z,NONE,"> @javedali99 please could you supply an MVCE? ```python # download data for yr in range(2011,2015): url = f'https://downloads.psl.noaa.gov/Datasets/cpc_us_precip/RT/precip.V1.0.{yr}.nc' savename = url.split('/')[-1] urllib.request.urlretrieve(url,savename) # combine netcdf files ds2011_2014 = xr.open_mfdataset('precip.V1.0.*.nc', concat_dim='time', combine='nested') # coordinates top = 40 bottom = 37 left = 258 right = 265.4 # subsetting the data based on boundary coordinates ds_sel = ds2011_2014.isel(lon=(ds2011_2014.lon >= left) & (ds2011_2014.lon <= right), lat=(ds2011_2014.lat >= bottom) & (ds2011_2014.lat <= top), ) ``` ","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,1206496679 https://github.com/pydata/xarray/issues/6490#issuecomment-1100958666,https://api.github.com/repos/pydata/xarray/issues/6490,1100958666,IC_kwDOAMm_X85Bn0vK,5635139,2022-04-17T22:19:43Z,2022-04-17T22:19:43Z,MEMBER,@javedali99 please could you supply an MVCE?,"{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,1206496679