html_url,issue_url,id,node_id,user,created_at,updated_at,author_association,body,reactions,performed_via_github_app,issue https://github.com/pydata/xarray/issues/6263#issuecomment-1035102667,https://api.github.com/repos/pydata/xarray/issues/6263,1035102667,IC_kwDOAMm_X849smnL,14371165,2022-02-10T16:07:53Z,2022-02-10T16:07:53Z,MEMBER,"xarray now relies on matplotlibs converters instead of automatically registering pandas converters, see #6109. A pure matplotlib version doesn't work either so importing xarray shouldn't all of a sudden change that: ```python import numpy as np import matplotlib.pyplot as plt times = np.arange(np.datetime64('2001-01-02'), np.datetime64('2002-02-03'), np.timedelta64(75, 'm')) y = np.random.randn(len(times)) fig, ax = plt.subplots() ax.plot(times, y) ax.set_xlim([""2002-01-03"",""2002-01-20""]) ``` One way is to use datetime64 in set_xlim, which makes sense to me since `times` is `datetime64` as well: ```python import numpy as np import matplotlib.pyplot as plt times = np.arange(np.datetime64('2001-01-02'), np.datetime64('2002-02-03'), np.timedelta64(75, 'm')) y = np.random.randn(len(times)) fig, ax = plt.subplots() ax.plot(times, y) ax.set_xlim(np.array([""2002-01-03"",""2002-01-20""], dtype=""datetime64"")) ``` Or use pandas converters like xarray did before: ```python import numpy as np import matplotlib.pyplot as plt import pandas as pd pd.plotting.register_matplotlib_converters() times = np.arange(np.datetime64('2001-01-02'), np.datetime64('2002-02-03'), np.timedelta64(75, 'm')) y = np.random.randn(len(times)) fig, ax = plt.subplots() ax.plot(times, y) ax.set_xlim([""2002-01-03"",""2002-01-20""]) ``` ","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,1130073503