html_url,issue_url,id,node_id,user,created_at,updated_at,author_association,body,reactions,performed_via_github_app,issue
https://github.com/pydata/xarray/issues/6263#issuecomment-1035102667,https://api.github.com/repos/pydata/xarray/issues/6263,1035102667,IC_kwDOAMm_X849smnL,14371165,2022-02-10T16:07:53Z,2022-02-10T16:07:53Z,MEMBER,"xarray now relies on matplotlibs converters instead of automatically registering pandas converters, see #6109.
A pure matplotlib version doesn't work either so importing xarray shouldn't all of a sudden change that:
```python
import numpy as np
import matplotlib.pyplot as plt
times = np.arange(np.datetime64('2001-01-02'),
np.datetime64('2002-02-03'), np.timedelta64(75, 'm'))
y = np.random.randn(len(times))
fig, ax = plt.subplots()
ax.plot(times, y)
ax.set_xlim([""2002-01-03"",""2002-01-20""])
```
One way is to use datetime64 in set_xlim, which makes sense to me since `times` is `datetime64` as well:
```python
import numpy as np
import matplotlib.pyplot as plt
times = np.arange(np.datetime64('2001-01-02'),
np.datetime64('2002-02-03'), np.timedelta64(75, 'm'))
y = np.random.randn(len(times))
fig, ax = plt.subplots()
ax.plot(times, y)
ax.set_xlim(np.array([""2002-01-03"",""2002-01-20""], dtype=""datetime64""))
```
Or use pandas converters like xarray did before:
```python
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
pd.plotting.register_matplotlib_converters()
times = np.arange(np.datetime64('2001-01-02'),
np.datetime64('2002-02-03'), np.timedelta64(75, 'm'))
y = np.random.randn(len(times))
fig, ax = plt.subplots()
ax.plot(times, y)
ax.set_xlim([""2002-01-03"",""2002-01-20""])
```
","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,1130073503