html_url,issue_url,id,node_id,user,created_at,updated_at,author_association,body,reactions,performed_via_github_app,issue https://github.com/pydata/xarray/issues/7758#issuecomment-1521731294,https://api.github.com/repos/pydata/xarray/issues/7758,1521731294,IC_kwDOAMm_X85as8be,33153877,2023-04-25T12:46:52Z,2023-04-25T12:46:52Z,NONE,@dcherian Interesting! There should ideally be a way to set that because 32-64 seconds is way to long to wait before timing out in my opinion.,"{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,1668898601 https://github.com/pydata/xarray/issues/7758#issuecomment-1509899467,https://api.github.com/repos/pydata/xarray/issues/7758,1509899467,IC_kwDOAMm_X85Z_zzL,33153877,2023-04-15T17:21:07Z,2023-04-15T17:21:07Z,NONE,"Ah, got it! In that case it's a real server since I don't mount anything.","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,1668898601 https://github.com/pydata/xarray/issues/7758#issuecomment-1509633511,https://api.github.com/repos/pydata/xarray/issues/7758,1509633511,IC_kwDOAMm_X85Z-y3n,33153877,2023-04-15T08:21:16Z,2023-04-15T15:33:44Z,NONE,"I'm using netCDF4. I'm not sure what the difference between a real server and a remote file system is, but I use OPeNDAP to fetch the data I need. One example is the following data file (the first link under the access subheader): https://thredds.met.no/thredds/catalog/osisaf/met.no/ice/index/v2p1/nh/catalog.html?dataset=osisaf/met.no/ice/index/v2p1/nh/osisaf_nh_sie_monthly.nc","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,1668898601 https://github.com/pydata/xarray/issues/7504#issuecomment-1419511942,https://api.github.com/repos/pydata/xarray/issues/7504,1419511942,IC_kwDOAMm_X85UnAiG,33153877,2023-02-06T17:57:56Z,2023-02-06T17:57:56Z,NONE,"Ok, great! Thanks for the tip. On Mon, Feb 6, 2023 at 13:51, Spencer Clark ***@***.***> wrote: > Indeed currently we do not support indexing a CFTimeIndex-backed array using a list of strings, but that's something I think we would be happy to change (e.g. we do accept a list of strings to interp for CFTimeIndex-backed arrays). > > For the time being you should be able to use cftime.DatetimeAllLeap values themselves: > > ds > > . > > sel > > ( > > time > > = > > [ > > cftime > > . > > DatetimeAllLeap > > ( > > 2023 > > , > > 1 > > , > > 1 > > ), > > cftime > > . > > DatetimeAllLeap > > ( > > 2023 > > , > > 1 > > , > > 2 > > )]) > > — > Reply to this email directly, [view it on GitHub](https://github.com/pydata/xarray/issues/7504#issuecomment-1419032191), or [unsubscribe](https://github.com/notifications/unsubscribe-auth/AH46GVN2PYM755NWNKTGLJTWWDXWNANCNFSM6AAAAAAUSSUZUI). > You are receiving this because you authored the thread.Message ID: ***@***.***>","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,1572434353 https://github.com/pydata/xarray/issues/4061#issuecomment-977165503,https://api.github.com/repos/pydata/xarray/issues/4061,977165503,IC_kwDOAMm_X846Ply_,33153877,2021-11-23T21:01:17Z,2021-11-23T21:01:17Z,NONE,"I also have an issue where xarray doesn't produce the correct plot when normalizing with BoundaryNorm: ```python import xarray as xr import matplotlib.pyplot as plt import matplotlib.colors as colors from cmcrameri import cm airtemps = xr.tutorial.open_dataset(""air_temperature"") # Convert to Celsius. air = airtemps.air - 273.15 air.attrs = airtemps.air.attrs air.attrs[""units""] = ""deg C"" # Select a timestep. air2d = air.isel(time=500) # Plotting discrete bounds with matplotlib works fine. bounds = [x for x in range(-30, 31, 10)] norm = colors.BoundaryNorm(boundaries=bounds, extend='both', ncolors=cm.vik.N) fig, ax = plt.subplots() cs = ax.pcolormesh(air2d.lon, air2d.lat, air2d, cmap=cm.vik, norm=norm) fig.colorbar(cs) plt.show() # Plotting with xarray doesn't work. fig, ax = plt.subplots() air2d.plot.pcolormesh(ax=ax, norm=norm) plt.show() ``` First one is from matplotlib: ![matplotlib](https://user-images.githubusercontent.com/33153877/143118949-f2a982ff-3fb1-4f14-8d8d-982ea8ead575.png) Second one is from xarray: ![xarray](https://user-images.githubusercontent.com/33153877/143118956-5a73a03e-7535-4d22-aaf8-987c4496e539.png) I also get the following traceback after running the script: ```bash Traceback (most recent call last): File ""/home/michael/miniconda3/envs/testing_xarray/lib/python3.10/site-packages/matplotlib/cbook/__init__.py"", line 287, in process func(*args, **kwargs) File ""/home/michael/miniconda3/envs/testing_xarray/lib/python3.10/site-packages/matplotlib/backend_bases.py"", line 3056, in mouse_move s = self._mouse_event_to_message(event) File ""/home/michael/miniconda3/envs/testing_xarray/lib/python3.10/site-packages/matplotlib/backend_bases.py"", line 3048, in _mouse_event_to_message data_str = a.format_cursor_data(data).rstrip() File ""/home/michael/miniconda3/envs/testing_xarray/lib/python3.10/site-packages/matplotlib/artist.py"", line 1282, in format_cursor_data neighbors = self.norm.inverse( File ""/home/michael/miniconda3/envs/testing_xarray/lib/python3.10/site-packages/matplotlib/colors.py"", line 1832, in inverse raise ValueError(""BoundaryNorm is not invertible"") ValueError: BoundaryNorm is not invertible ```
Output of xr.show_versions() INSTALLED VERSIONS ------------------ commit: None python: 3.10.0 | packaged by conda-forge | (default, Nov 20 2021, 02:25:18) [GCC 9.4.0] python-bits: 64 OS: Linux OS-release: 5.14.18-300.fc35.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_GB.UTF-8 LOCALE: ('en_GB', 'UTF-8') libhdf5: 1.12.1 libnetcdf: 4.8.1 xarray: 0.20.1 pandas: 1.3.4 numpy: 1.21.4 scipy: 1.7.2 netCDF4: 1.5.8 pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: 1.5.1.1 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: None distributed: None matplotlib: 3.5.0 cartopy: 0.20.1 seaborn: None numbagg: None fsspec: None cupy: None pint: None sparse: None setuptools: 59.2.0 pip: 21.3.1 conda: None pytest: None IPython: 7.29.0 sphinx: None
","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,618141254 https://github.com/pydata/xarray/issues/5987#issuecomment-974505817,https://api.github.com/repos/pydata/xarray/issues/5987,974505817,IC_kwDOAMm_X846FcdZ,33153877,2021-11-19T22:10:48Z,2021-11-19T22:10:48Z,NONE,"@mathause Sorry for the late reply! I've been very busy lately, but yes, please move it to a discussion.","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,1052918815 https://github.com/pydata/xarray/issues/5987#issuecomment-968380475,https://api.github.com/repos/pydata/xarray/issues/5987,968380475,IC_kwDOAMm_X845uFA7,33153877,2021-11-14T22:56:32Z,2021-11-14T22:56:44Z,NONE,"@spencerkclark Thanks for the suggestion! I haven't made any serious tests yet, but my initial tests worked fine =)","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,1052918815 https://github.com/pydata/xarray/issues/5987#issuecomment-968291159,https://api.github.com/repos/pydata/xarray/issues/5987,968291159,IC_kwDOAMm_X845tvNX,33153877,2021-11-14T13:28:20Z,2021-11-14T13:28:20Z,NONE,"I decided to also look at what happens when you plot with contourf. In this case both the plot of the original data and the interpolated data have a white line at the central longitude, but the interpolated data also has white lines at the poles: **Original MPI-ESM** ![contour_subset](https://user-images.githubusercontent.com/33153877/141683012-a4a003e6-d9f0-4003-8c9c-64fe20809a88.png) **Interpolated MPI-ESM** ![contour_interp](https://user-images.githubusercontent.com/33153877/141683016-9de823d3-517e-4b2a-907f-fc541846ff79.png) Here's the code that produced the plots: ```python import xarray as xr import matplotlib.pyplot as plt import cartopy.crs as ccrs cesm2_waccm = xr.open_dataset('pr_day_CESM2-WACCM_ssp245_r2i1p1f1_gn_20750101-20841231.nc') mpi = xr.open_dataset('pr_day_MPI-ESM1-2-LR_ssp245_r1i1p1f1_gn_20750101-20941231.nc') cesm2_waccm_subset = cesm2_waccm.sel(time=slice('2075-01-01', '2075-12-31')).mean(dim='time') mpi_subset = mpi.sel(time=slice('2075-01-01', '2075-12-31')).mean(dim='time') map_proj = ccrs.PlateCarree() # Now this also produces a white line. plot = mpi_subset.pr.plot.contourf(subplot_kws={'projection': map_proj}) plot.axes.coastlines() plt.show() mpi_interp = mpi_subset.interp(lat=cesm2_waccm_subset['lat'], lon=cesm2_waccm_subset['lon']) # Has a white line at the central longitude. plot = mpi_interp.pr.plot.contourf(subplot_kws={'projection': map_proj}) plot.axes.coastlines() plt.show() ``` ","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,1052918815