html_url,issue_url,id,node_id,user,created_at,updated_at,author_association,body,reactions,performed_via_github_app,issue
https://github.com/pydata/xarray/issues/7758#issuecomment-1521731294,https://api.github.com/repos/pydata/xarray/issues/7758,1521731294,IC_kwDOAMm_X85as8be,33153877,2023-04-25T12:46:52Z,2023-04-25T12:46:52Z,NONE,@dcherian Interesting! There should ideally be a way to set that because 32-64 seconds is way to long to wait before timing out in my opinion.,"{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,1668898601
https://github.com/pydata/xarray/issues/7758#issuecomment-1509899467,https://api.github.com/repos/pydata/xarray/issues/7758,1509899467,IC_kwDOAMm_X85Z_zzL,33153877,2023-04-15T17:21:07Z,2023-04-15T17:21:07Z,NONE,"Ah, got it! In that case it's a real server since I don't mount anything.","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,1668898601
https://github.com/pydata/xarray/issues/7758#issuecomment-1509633511,https://api.github.com/repos/pydata/xarray/issues/7758,1509633511,IC_kwDOAMm_X85Z-y3n,33153877,2023-04-15T08:21:16Z,2023-04-15T15:33:44Z,NONE,"I'm using netCDF4. I'm not sure what the difference between a real server and a remote file system is, but I use OPeNDAP to fetch the data I need.
One example is the following data file (the first link under the access subheader): https://thredds.met.no/thredds/catalog/osisaf/met.no/ice/index/v2p1/nh/catalog.html?dataset=osisaf/met.no/ice/index/v2p1/nh/osisaf_nh_sie_monthly.nc","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,1668898601
https://github.com/pydata/xarray/issues/7504#issuecomment-1419511942,https://api.github.com/repos/pydata/xarray/issues/7504,1419511942,IC_kwDOAMm_X85UnAiG,33153877,2023-02-06T17:57:56Z,2023-02-06T17:57:56Z,NONE,"Ok, great! Thanks for the tip.
On Mon, Feb 6, 2023 at 13:51, Spencer Clark ***@***.***> wrote:
> Indeed currently we do not support indexing a CFTimeIndex-backed array using a list of strings, but that's something I think we would be happy to change (e.g. we do accept a list of strings to interp for CFTimeIndex-backed arrays).
>
> For the time being you should be able to use cftime.DatetimeAllLeap values themselves:
>
> ds
>
> .
>
> sel
>
> (
>
> time
>
> =
>
> [
>
> cftime
>
> .
>
> DatetimeAllLeap
>
> (
>
> 2023
>
> ,
>
> 1
>
> ,
>
> 1
>
> ),
>
> cftime
>
> .
>
> DatetimeAllLeap
>
> (
>
> 2023
>
> ,
>
> 1
>
> ,
>
> 2
>
> )])
>
> —
> Reply to this email directly, [view it on GitHub](https://github.com/pydata/xarray/issues/7504#issuecomment-1419032191), or [unsubscribe](https://github.com/notifications/unsubscribe-auth/AH46GVN2PYM755NWNKTGLJTWWDXWNANCNFSM6AAAAAAUSSUZUI).
> You are receiving this because you authored the thread.Message ID: ***@***.***>","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,1572434353
https://github.com/pydata/xarray/issues/4061#issuecomment-977165503,https://api.github.com/repos/pydata/xarray/issues/4061,977165503,IC_kwDOAMm_X846Ply_,33153877,2021-11-23T21:01:17Z,2021-11-23T21:01:17Z,NONE,"I also have an issue where xarray doesn't produce the correct plot when normalizing with BoundaryNorm:
```python
import xarray as xr
import matplotlib.pyplot as plt
import matplotlib.colors as colors
from cmcrameri import cm
airtemps = xr.tutorial.open_dataset(""air_temperature"")
# Convert to Celsius.
air = airtemps.air - 273.15
air.attrs = airtemps.air.attrs
air.attrs[""units""] = ""deg C""
# Select a timestep.
air2d = air.isel(time=500)
# Plotting discrete bounds with matplotlib works fine.
bounds = [x for x in range(-30, 31, 10)]
norm = colors.BoundaryNorm(boundaries=bounds, extend='both', ncolors=cm.vik.N)
fig, ax = plt.subplots()
cs = ax.pcolormesh(air2d.lon, air2d.lat, air2d, cmap=cm.vik, norm=norm)
fig.colorbar(cs)
plt.show()
# Plotting with xarray doesn't work.
fig, ax = plt.subplots()
air2d.plot.pcolormesh(ax=ax, norm=norm)
plt.show()
```
First one is from matplotlib:

Second one is from xarray:

I also get the following traceback after running the script:
```bash
Traceback (most recent call last):
File ""/home/michael/miniconda3/envs/testing_xarray/lib/python3.10/site-packages/matplotlib/cbook/__init__.py"", line 287, in process
func(*args, **kwargs)
File ""/home/michael/miniconda3/envs/testing_xarray/lib/python3.10/site-packages/matplotlib/backend_bases.py"", line 3056, in mouse_move
s = self._mouse_event_to_message(event)
File ""/home/michael/miniconda3/envs/testing_xarray/lib/python3.10/site-packages/matplotlib/backend_bases.py"", line 3048, in _mouse_event_to_message
data_str = a.format_cursor_data(data).rstrip()
File ""/home/michael/miniconda3/envs/testing_xarray/lib/python3.10/site-packages/matplotlib/artist.py"", line 1282, in format_cursor_data
neighbors = self.norm.inverse(
File ""/home/michael/miniconda3/envs/testing_xarray/lib/python3.10/site-packages/matplotlib/colors.py"", line 1832, in inverse
raise ValueError(""BoundaryNorm is not invertible"")
ValueError: BoundaryNorm is not invertible
```
Output of xr.show_versions()
INSTALLED VERSIONS
------------------
commit: None
python: 3.10.0 | packaged by conda-forge | (default, Nov 20 2021, 02:25:18) [GCC 9.4.0]
python-bits: 64
OS: Linux
OS-release: 5.14.18-300.fc35.x86_64
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_GB.UTF-8
LOCALE: ('en_GB', 'UTF-8')
libhdf5: 1.12.1
libnetcdf: 4.8.1
xarray: 0.20.1
pandas: 1.3.4
numpy: 1.21.4
scipy: 1.7.2
netCDF4: 1.5.8
pydap: None
h5netcdf: None
h5py: None
Nio: None
zarr: None
cftime: 1.5.1.1
nc_time_axis: None
PseudoNetCDF: None
rasterio: None
cfgrib: None
iris: None
bottleneck: None
dask: None
distributed: None
matplotlib: 3.5.0
cartopy: 0.20.1
seaborn: None
numbagg: None
fsspec: None
cupy: None
pint: None
sparse: None
setuptools: 59.2.0
pip: 21.3.1
conda: None
pytest: None
IPython: 7.29.0
sphinx: None
","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,618141254
https://github.com/pydata/xarray/issues/5987#issuecomment-974505817,https://api.github.com/repos/pydata/xarray/issues/5987,974505817,IC_kwDOAMm_X846FcdZ,33153877,2021-11-19T22:10:48Z,2021-11-19T22:10:48Z,NONE,"@mathause Sorry for the late reply! I've been very busy lately, but yes, please move it to a discussion.","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,1052918815
https://github.com/pydata/xarray/issues/5987#issuecomment-968380475,https://api.github.com/repos/pydata/xarray/issues/5987,968380475,IC_kwDOAMm_X845uFA7,33153877,2021-11-14T22:56:32Z,2021-11-14T22:56:44Z,NONE,"@spencerkclark Thanks for the suggestion! I haven't made any serious tests yet, but my initial tests worked fine =)","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,1052918815
https://github.com/pydata/xarray/issues/5987#issuecomment-968291159,https://api.github.com/repos/pydata/xarray/issues/5987,968291159,IC_kwDOAMm_X845tvNX,33153877,2021-11-14T13:28:20Z,2021-11-14T13:28:20Z,NONE,"I decided to also look at what happens when you plot with contourf. In this case both the plot of the original data and the interpolated data have a white line at the central longitude, but the interpolated data also has white lines at the poles:
**Original MPI-ESM**

**Interpolated MPI-ESM**

Here's the code that produced the plots:
```python
import xarray as xr
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
cesm2_waccm = xr.open_dataset('pr_day_CESM2-WACCM_ssp245_r2i1p1f1_gn_20750101-20841231.nc')
mpi = xr.open_dataset('pr_day_MPI-ESM1-2-LR_ssp245_r1i1p1f1_gn_20750101-20941231.nc')
cesm2_waccm_subset = cesm2_waccm.sel(time=slice('2075-01-01', '2075-12-31')).mean(dim='time')
mpi_subset = mpi.sel(time=slice('2075-01-01', '2075-12-31')).mean(dim='time')
map_proj = ccrs.PlateCarree()
# Now this also produces a white line.
plot = mpi_subset.pr.plot.contourf(subplot_kws={'projection': map_proj})
plot.axes.coastlines()
plt.show()
mpi_interp = mpi_subset.interp(lat=cesm2_waccm_subset['lat'], lon=cesm2_waccm_subset['lon'])
# Has a white line at the central longitude.
plot = mpi_interp.pr.plot.contourf(subplot_kws={'projection': map_proj})
plot.axes.coastlines()
plt.show()
```
","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,1052918815