html_url,issue_url,id,node_id,user,created_at,updated_at,author_association,body,reactions,performed_via_github_app,issue https://github.com/pydata/xarray/issues/2921#issuecomment-489752548,https://api.github.com/repos/pydata/xarray/issues/2921,489752548,MDEyOklzc3VlQ29tbWVudDQ4OTc1MjU0OA==,15570875,2019-05-06T19:52:47Z,2019-05-06T19:52:47Z,NONE,"It looks like `ds.time.encoding` is not getting set when `open_mfdataset` is opening multiple files. I suspect that this is leading to the surprising unit for `time` when the `ds` is written out. The code below demonstrates that `ds.time.encoding` is set by `open_mfdataset` in the single-file case and is not set in the multi-file case. However, `ds.time_bounds.encoding` is set in both the single- and multi-file cases. The possibility of this is alluded to the in a [comment](https://github.com/pydata/xarray/issues/2436#issuecomment-449737841) in #2436, which relates the issue to #1614. ``` import numpy as np import xarray as xr # create time and time_bounds DataArrays for Jan-1850 and Feb-1850 time_bounds_vals = np.array([[0.0, 31.0], [31.0, 59.0]]) time_vals = time_bounds_vals.mean(axis=1) time_var = xr.DataArray(time_vals, dims='time', coords={'time':time_vals}) time_bounds_var = xr.DataArray(time_bounds_vals, dims=('time', 'd2'), coords={'time':time_vals}) # create Dataset of time and time_bounds ds = xr.Dataset(coords={'time':time_var}, data_vars={'time_bounds':time_bounds_var}) ds.time.attrs = {'bounds':'time_bounds', 'calendar':'noleap', 'units':'days since 1850-01-01'} # write Jan-1850 values to file ds.isel(time=slice(0,1)).to_netcdf('Jan-1850.nc', unlimited_dims='time') # write Feb-1850 values to file ds.isel(time=slice(1,2)).to_netcdf('Feb-1850.nc', unlimited_dims='time') # use open_mfdataset to read in files, combining into 1 Dataset decode_times = True decode_cf = True ds = xr.open_mfdataset(['Jan-1850.nc'], decode_cf=decode_cf, decode_times=decode_times) print('time and time_bounds encoding, single-file open_mfdataset') print(ds.time.encoding) print(ds.time_bounds.encoding) # use open_mfdataset to read in files, combining into 1 Dataset decode_times = True decode_cf = True ds = xr.open_mfdataset(['Jan-1850.nc', 'Feb-1850.nc'], decode_cf=decode_cf, decode_times=decode_times) print('--------------------') print('time and time_bounds encoding, multi-file open_mfdataset') print(ds.time.encoding) print(ds.time_bounds.encoding) ``` produces ``` time and time_bounds encoding, single-file open_mfdataset {'zlib': False, 'shuffle': False, 'complevel': 0, 'fletcher32': False, 'contiguous': False, 'chunksizes': (512,), 'source': '/gpfs/fs1/work/klindsay/analysis/CESM2_coup_carb_cycle_JAMES/Jan-1850.nc', 'original_shape': (1,), 'dtype': dtype('float64'), '_FillValue': nan, 'units': 'days since 1850-01-01', 'calendar': 'noleap'} {'zlib': False, 'shuffle': False, 'complevel': 0, 'fletcher32': False, 'contiguous': False, 'chunksizes': (1, 2), 'source': '/gpfs/fs1/work/klindsay/analysis/CESM2_coup_carb_cycle_JAMES/Jan-1850.nc', 'original_shape': (1, 2), 'dtype': dtype('float64'), '_FillValue': nan, 'units': 'days since 1850-01-01', 'calendar': 'noleap'} -------------------- time and time_bounds encoding, multi-file open_mfdataset {} {'zlib': False, 'shuffle': False, 'complevel': 0, 'fletcher32': False, 'contiguous': False, 'chunksizes': (1, 2), 'source': '/gpfs/fs1/work/klindsay/analysis/CESM2_coup_carb_cycle_JAMES/Jan-1850.nc', 'original_shape': (1, 2), 'dtype': dtype('float64'), '_FillValue': nan, 'units': 'days since 1850-01-01', 'calendar': 'noleap'} ```","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,437418525