html_url,issue_url,id,node_id,user,created_at,updated_at,author_association,body,reactions,performed_via_github_app,issue
https://github.com/pydata/xarray/issues/2488#issuecomment-703222102,https://api.github.com/repos/pydata/xarray/issues/2488,703222102,MDEyOklzc3VlQ29tbWVudDcwMzIyMjEwMg==,26384082,2020-10-04T08:32:37Z,2020-10-04T08:32:37Z,NONE,"In order to maintain a list of currently relevant issues, we mark issues as stale after a period of inactivity
If this issue remains relevant, please comment here or remove the `stale` label; otherwise it will be marked as closed automatically
","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,370183554
https://github.com/pydata/xarray/issues/2488#issuecomment-430232155,https://api.github.com/repos/pydata/xarray/issues/2488,430232155,MDEyOklzc3VlQ29tbWVudDQzMDIzMjE1NQ==,16838898,2018-10-16T13:13:37Z,2018-10-16T13:13:37Z,NONE,I am open for suggestions to get the code running faster :D,"{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,370183554
https://github.com/pydata/xarray/issues/2488#issuecomment-430232027,https://api.github.com/repos/pydata/xarray/issues/2488,430232027,MDEyOklzc3VlQ29tbWVudDQzMDIzMjAyNw==,16838898,2018-10-16T13:13:13Z,2018-10-16T13:13:13Z,NONE,"%%time
def group_lat(x):
# x is a DataFrame of group values
# now find the value of the longitude box to append to the dictionary key
value = np.ones(1)
value[0] = x.lon.mean()
idx = (np.abs(lon_cent - value)).argmin()
lokey = lon_cent[idx] # longitude value of the box
# compute groups for the latitude
y = x.groupby_bins('lat', lat_bin, labels=lat_cent)
y = dict(y)
# replace the old key with the new key: lon,lat
key = np.asarray((list(y.keys()))) # get dict keys as array
newkey = np.stack((np.ones(len(key))*lokey,key),axis=1)
newkey = tuple(newkey.tolist())
key = tuple(y.keys()) # get dict keys as list
for i in range(len(key)):
y[tuple(newkey[i])] = y[key[i]]
del y[key[i]]
return y
#geop_mean = geop1.groupby_bins('lon', lon_bin, labels=lon_cent).apply(group_lat)
geop_mean = geop1.groupby_bins('lon', lon_bin, labels=lon_cent)
geop_mean = dict(geop_mean)
# group into lat boxes
l = 0
geo_grid = dict()
for x in list(geop_mean.keys()):
y = group_lat(geop_mean[x])
if l == 0:
geo_grid = y
else:
geo_grid.update(y)
l += 1
# Now the data is sorted into boxes and still contains all metadata
# Now get the mean values for each box
l = 0
m = np.zeros((len(tuple(geo_grid.keys())),4))
d = np.asarray(list(geo_grid.keys()))
gp = xr.Dataset({'geopot': (['lat','lon'],
np.ones((lat_cent.shape[0],
lon_cent.shape[0]))),
'z': (['lat','lon'],
np.ones((lat_cent.shape[0],
lon_cent.shape[0])))},
coords={'lon': (['lon'],lon_cent),
'lat': (['lat'],lat_cent)})
for k in range(d.shape[0]):
e = tuple(d[k])
#m[l,2] = geo_grid[e].z.mean()
gp['geopot'].loc[dict(lat=d[k][1], lon=d[k][0])] = geo_grid[e].geopot.mean()
gp['z'].loc[dict(lat=d[k][1], lon=d[k][0])] = geo_grid[e].z.mean()
#gp.loc[dict(lat=m[0,1], lon=m[0,0])]
l +=1
","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,370183554
https://github.com/pydata/xarray/issues/2488#issuecomment-430231535,https://api.github.com/repos/pydata/xarray/issues/2488,430231535,MDEyOklzc3VlQ29tbWVudDQzMDIzMTUzNQ==,16838898,2018-10-16T13:11:44Z,2018-10-16T13:12:36Z,NONE,"I wrote a work around for my purpose but I guess I could still be faster ...
","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,370183554