html_url,issue_url,id,node_id,user,created_at,updated_at,author_association,body,reactions,performed_via_github_app,issue
https://github.com/pydata/xarray/issues/1553#issuecomment-748491929,https://api.github.com/repos/pydata/xarray/issues/1553,748491929,MDEyOklzc3VlQ29tbWVudDc0ODQ5MTkyOQ==,18488,2020-12-19T16:00:00Z,2020-12-19T16:00:00Z,NONE,"For the case of a simple vectorized `reindex` you can work around the lack of a multi-dimensional `DataArray.reindex` by falling back on `isel` as follows:
```
def reindex_vectorized(da, indexers, method=None, tolerance=None, dim=None, fill_value=None):
# Reindex does not presently support vectorized lookups: https://github.com/pydata/xarray/issues/1553
# Sel does (e.g. https://github.com/pydata/xarray/issues/4630) but can't handle missing keys
if dim is None:
dim = 'dim_0'
if fill_value is None:
fill_value = {'i': np.nan, 'f': np.nan}[da.dtype.kind]
dtype = np.result_type(fill_value, da.dtype)
if method is None:
method = {}
elif not isinstance(method, dict):
method = {dim: method for dim in da.dims}
if tolerance is None:
tolerance = {}
elif not isinstance(tolerance, dict):
tolerance = {dim: tolerance for dim in da.dims}
ixs = {}
masks = []
any_empty = False
for index_dim, index in indexers.items():
ix = da.indexes[index_dim].get_indexer(index, method=method.get(index_dim), tolerance=tolerance.get(index_dim))
ixs[index_dim] = xr.DataArray(np.fmax(0, ix), dims=[dim])
masks.append(ix >= 0)
any_empty = any_empty or (len(da.indexes[index_dim]) == 0)
mask = functools.reduce(lambda x, y: x & y, masks)
if any_empty and len(mask):
# Unfortunately can't just isel with `ixs` in this special case, because we'll go out of bounds accessing index 0
new_coords = {
name: coord
for name, coord in da.coords.items()
# XXX: to match the other case we should really include coords with name in ixs too, but it's fiddly
if name not in ixs
}
new_dims = [name for name in da.dims if name not in ixs] + [dim]
result = xr.DataArray(
data=np.broadcast_to(
fill_value,
tuple(n for name, n in da.sizes.items() if name not in ixs) + (len(mask),)
),
coords=new_coords, dims=new_dims,
name=da.name, attrs=da.attrs
)
else:
result = da[ixs]
if not mask.all():
result = result.astype(dtype, copy=False)
result[{dim: ~mask}] = fill_value
return result
```
Example:
```
sensor_data = xr.DataArray(np.arange(6).reshape((3, 2)), coords=[
('time', [0, 2, 3]),
('sensor', ['A', 'C']),
])
reindex_vectorized(sensor_data, {
'sensor': ['A', 'A', 'A', 'B', 'C'],
'time': [0, 1, 2, 0, 0],
}, method={'time': 'ffill'})
# [0, 0, 2, nan, 1]
reindex_vectorized(xr.DataArray(coords=[
('sensor', []),
('time', [0, 2])
]), {
'sensor': ['A', 'A', 'A', 'B', 'C'],
'time': [0, 1, 2, 0, 0],
}, method={'time': 'ffill'})
# [nan, nan, nan, nan, nan]
```","{""total_count"": 1, ""+1"": 1, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,254927382