html_url,issue_url,id,node_id,user,created_at,updated_at,author_association,body,reactions,performed_via_github_app,issue https://github.com/pydata/xarray/issues/7662#issuecomment-1480973335,https://api.github.com/repos/pydata/xarray/issues/7662,1480973335,IC_kwDOAMm_X85YRdwX,43635101,2023-03-23T10:51:27Z,2023-03-23T10:51:27Z,NONE,"Values outside of the month are filled with NaN when aggregating after your month filter. It seems to be a side effect of grouping with a frequency.","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,1636435706 https://github.com/pydata/xarray/issues/7662#issuecomment-1480964097,https://api.github.com/repos/pydata/xarray/issues/7662,1480964097,IC_kwDOAMm_X85YRbgB,43635101,2023-03-23T10:44:26Z,2023-03-23T10:46:22Z,NONE,"Idk if this comes from xarray, pandas seems to have the same behaviour: ```python import xarray as xr import pandas as pd import numpy as np time = pd.date_range(""2000-01-01"", ""2022-01-01"", freq=""1h"") ds = xr.Dataset({""time"": time, ""v"": (""time"",np.random.rand(len(time)))}) ds df = ds.to_dataframe() df = df[df.index.month.isin([6,7,8])] df.groupby(pd.Grouper(freq=""D"")).mean() v time 2000-06-01 0.451577 2000-06-02 0.524039 2000-06-03 0.540553 2000-06-04 0.537686 2000-06-05 0.521928 ... ... 2021-08-27 0.441088 2021-08-28 0.473274 2021-08-29 0.455666 2021-08-30 0.559104 2021-08-31 0.424167 [7762 rows x 1 columns] ``` You can select your months after performing aggregation and you will have the correct number of rows","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,1636435706