html_url,issue_url,id,node_id,user,created_at,updated_at,author_association,body,reactions,performed_via_github_app,issue https://github.com/pydata/xarray/issues/1989#issuecomment-373226888,https://api.github.com/repos/pydata/xarray/issues/1989,373226888,MDEyOklzc3VlQ29tbWVudDM3MzIyNjg4OA==,6815844,2018-03-15T01:10:37Z,2018-03-15T01:15:33Z,MEMBER,"I notice that bottleneck does the dtype conversion. I think in your environment bottleneck is installed. ```python In [9]: np.sum(a) # equivalent to a.sum(), using bottleneck Out[9]: array(499943.21875) In [10]: np.sum(a.data) # numpy native Out[10]: 499941.53 In [15]: bn.nansum(a.data) Out[15]: 499943.21875 In [11]: a.sum(dim=('x', 'y')) # multiple dims calls native np.sum Out[11]: array(499941.53, dtype=float32) ``` It might be an upstream issue. ","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,305373563