html_url,issue_url,id,node_id,user,created_at,updated_at,author_association,body,reactions,performed_via_github_app,issue https://github.com/pydata/xarray/issues/1605#issuecomment-334233567,https://api.github.com/repos/pydata/xarray/issues/1605,334233567,MDEyOklzc3VlQ29tbWVudDMzNDIzMzU2Nw==,2443309,2017-10-04T17:40:00Z,2017-10-04T17:40:00Z,MEMBER,"Okay, I got it now. Consider this example ```Python dates = pd.date_range('2016-01-01', '2016-12-31', freq='D') # orig = dates[dates != '2016-02-29'] # drop feb 29 and this example will work orig = dates da = xr.DataArray(np.random.random((len(orig), 2, 3)), dims=('time', 'x', 'y'), coords={'time': orig}) print(da) da.resample(time='1D').interpolate('linear') ``` ``` array([[[ 0.390107, 0.257026, 0.155619], [ 0.151772, 0.98012 , 0.61582 ]], [[ 0.081488, 0.038706, 0.627044], [ 0.840926, 0.778831, 0.102756]], ..., [[ 0.94791 , 0.274371, 0.582416], [ 0.544428, 0.351174, 0.603062]], [[ 0.166722, 0.507593, 0.841115], [ 0.099317, 0.649383, 0.842175]]]) Coordinates: * time (time) datetime64[ns] 2016-01-01 2016-01-02 2016-01-03 ... Dimensions without coordinates: x, y --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) in () 6 print(da) 7 ----> 8 da.resample(time='1d').interpolate('linear') ~/Dropbox/src/xarray/xarray/core/resample.py in interpolate(self, kind) 110 111 """""" --> 112 return self._interpolate(kind=kind) 113 114 def _interpolate(self, kind='linear'): ~/Dropbox/src/xarray/xarray/core/resample.py in _interpolate(self, kind) 204 f = interp1d(x, y, kind=kind, axis=axis, bounds_error=True, 205 assume_sorted=True) --> 206 new_x = self._full_index.values.astype('float') 207 208 # construct new up-sampled DataArray AttributeError: 'NoneType' object has no attribute 'values' ``` The application here is that I'm doing a QC check on a dataset that is sometimes missing Feb 29. It is sufficient for my application to always resample and fill Feb 29 when its missing. The pandas equivalent works: ```Python s = pd.Series(np.random.random((len(orig))), index=orig) new = s.resample('1D').interpolate('linear') new.equals(s) ``` ``` True ``` I think I have a fix for this which I'll push up quickly. ","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,262847801 https://github.com/pydata/xarray/issues/1605#issuecomment-334226859,https://api.github.com/repos/pydata/xarray/issues/1605,334226859,MDEyOklzc3VlQ29tbWVudDMzNDIyNjg1OQ==,2443309,2017-10-04T17:18:34Z,2017-10-04T17:18:34Z,MEMBER,@darothen - Thanks and interesting. I'm getting the above error in a real world resample operation so I figured they were the same issue. I'll dig into this and add some more detail in a bit. ,"{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,262847801